Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вычисление момента инерции при повороте осей. Главные оси инерции и главные моменты инерции





Пусть известны моменты инерции бесконечно малой фигуры dF относительно центральных осей Z,y;

Jz=∫Fy2dF-момент инерции относительно оси z

Jy=∫Fz2dF-момент инерции относительно оси y

Jyz=∫FzydF

Повернем оси у,z на угол α против часовой стрел- ки, считая угол поворота осей в этом направлении положительным. Определим моменты инерции сечения относительно повернутых осей z1,y1;

Jy1z1=∫Fz1y1dF

Jy1=∫Fz21dF

Jz1=∫Fy21dF

Координаты произвольной элементарной площадки в новых осях z1,y1 выражаются через координаты z,y прежней системы осей следующим образом;

Z1=OC+AD=zcosα+ysinα

y1=CB=BD-EA=ycosα-zsinα

Подставим эти значения в формулы моментов инерции (выше) и проинтегрируем почленно;

Jz1=∫F(ycosα-zsinα)2dF= =c =cos2α∫Fy2dF+sin2α∫FZ2dF- -sin2α∫FyzdF

Jy1=∫F(zcosα+ysinα)2dF= =sin2α∫Fy2dF+cos2α∫FZ2dF+sin2α∫FzydF

Jy1z1=∫F(zcosα+ysinα)(ycosα-zsinα)dF=(cos2α-sin2α) ∫FzydF+(1/2)sin2α(∫Fz2dF-∫Fz2dF)

Окончательно находим;

Jz1=Jzcos2α+Jysin2α-Jzysin2α

Jy1=Jycos2α+Jzsin2α-Jzysin2α

Jz1y1=Jzycos2α-(1/2)(Jy-Jz)· ·sin2α

Опр. гл. осей и гл. моментов инерции.

Наибольшее значение имеют главные центральные оси, центробежный момент инерции относительно которых равен нулю.

JUV=0

Чтобы определить положение главных центральных осей повернем произвольную начальную систему центральных осей z,y на некоторый угол α0, при котором центробежный момент инерции становится равным нулю;

Jz1y1=JVU=0

Тогда из формулы

Jz1y1=Jzycos2α-(1/2)(Jy-Jz)·sin2α

получим

Jz1y1=Jzycos2α0-(Jy -Jz)2(sin2α0)

Откуда

tg2α0=2Jzy/Jy-Jz

Откуда найдем два угла (острый и тупой) отличающиеся на 90 градусов. Откладываем от оси z и получаем положение оси U (ось V перпендикулярна U)Значения главных моментов инерции из формул;

Jz1=Jzcos2α+Jysin2α- Jzysin2α

Jy1=Jycos2α+Jzsin2α-Jzysin2α, прехода к повернутым осям, приняв α=α0

Jz1=Jzcos2α0+Jysin2α0 -Jzysin2α0

Jy1=Jycos2α0+Jzsin2α0-Jzysin2α0

Если исключить α0 из трех уравнений (Jz1,Jy1, Jz1y1), то получим формулу для вычисления моментов инерции относительно главных центральных осей.

JU=1/2[(Jz+Jy)±√(Jz-Jy)2+4J2zy]

JV=1/2[(Jz+Jy)±√(Jz -Jy)2+4J2zy]

Свойства главных центральных осей;

1)относительно этих осей центробежный момент инерции равен 0

2)относительно V,U моменты инерции имеют экстремальные величины

3)если плоская фигура имеет ось симметрии, то эта ось одна из главных центральны, вторая проходит через центр тяжести фигуры и перпендикулярна первой.







Date: 2015-12-13; view: 320; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию