Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Фокусное расстояние





Расстояние от задней главной плоскости до плоскос­ти, где фокусируются лучи света, падающие в объектив параллельным пучком (лучи, идущие из бесконечности), называется главным фокусным расстоянием и обозначает­ся буквой /. (Расстояние между пленкой и оптическим центром объектива, когда он сфокусирован на бесконечность.)

Главное фокусное расстояние в обиходе называют фокусным расстоянием. Величину его гравируют на оправе объектива.

Понятие главных плоскостей, используемое в геометри­ческой оптике, характеризует преломляющее действие всей совокупности элементов оптической системы, позволяет заменить сложный ход лучей через большое число различ­ных линз одним суммированным преломлением. Если продолжить луч, падающий на переднюю линзу объектива (рис. 6) параллельно главной оптической оси, не при­нимая во внимание его преломление на поверхностях отдельных линз, а с другой стороны также продолжить к обратную сторону луч, выходящий из объектива, эти продолженные линии пересекутся в точке Р. Плоскость //г» проходящую через точку Р, поставленную перпендику­лярно главной оптической оси объектива, называют зад-ней главной плоскостью. Фиктивное преломление лучей • вета в этой главной плоскости равносильно всем прелом­лениям их в объективе. От этой задней главной плоскости отсчитывается главное фокусное расстояние объектива.

Светосила объектива — отношение освещенности обра­зуемого объективом изображения к яркости объекта съем­ки; характеризует возможности выполнения киносъемки в различных условиях освещения. Чем больше светосила, тем меньше может быть освещенность объекта съемки.

S=E\B=C(D\£')²=C(1\ k)

Мерой светосилы объектива служит квадрат его отно­сительного отверстия:

где В — яркость изображаемой поверхности объекта съем­ки; £' — освещенность изображения на пленке в кадровом диафрагмы объектива окне киносъемочного аппарата; с — коэффициент светопропускания объектива; k — число диафрагмы.

На оправах объективов имеются деления, которые явля­ются знаменателями относительных отверстий и называ­ются числами диафрагмы. Для всех объективов установ­лен следующий стандартный ряд чисел диафрагмы: 2у 2,8; 4; 5,6; 8; 11; 16; 22. Число 2 соответствует относи-] тельному отверстию 1:2; число 2,8 — относительному от­верстию 1:2,8 и т. д. Каждое последующее деление) диафрагмы соответствует двукратному изменению освещенности оптического изображения в кадровом окне кино­аппарата. Чтобы сравнить светосилу объектива при двух разных значениях диафрагмы, следует сопоставить квадраты чисел диафрагмы. Например, требуется рассчитать, во сколько раз снизится освещенность оптического изображения в киноаппарате, если переставить диафрагму с деления, обозначенного числом 2, на деление с числом 8. Сравним квадраты чисел диафрагмы 2~: 8" = 4:64 = 1: 16, узнаем, что освещенность при диафрагме 8 будет в 16 раз меньше, чем при диафрагме 2. Следовательно, при диафрагмирова­нии объектива с числа 2 до числа 8 необходимо увеличить выдержку в 16 раз, чтобы получить такую же экспозицию, как при диафрагме 2.

Коэффициент светопропускания т непросветленных объективов составляет 0,5—0,7, в то время как у про­светленных он достигает значения 0,9.

Некоторые киносъемочные объективы имеют две шка­лы диафрагм: обычную, обозначающую геометрические относительные отверстия, и красную — выражающую эф­фективную светосилу с учетом коэффициента светопропус­кания объектива.

Апертура
отношение фокусного расстояния объектива к диафрагме. Изменяя его, можно управлять количеством света, проходящим через объектив на пленку в обычной камере или на ПЗС/КМОП матрицу в цифровой.

3. Ксеноновые лампы: принцип действия, свойства, область применения.

Ксеноновая лампа представляет собой кварцевую колбу, центральная часть которой имеет шаровую или эллипсоидную форму. В колбу впаяны два вольфрамовых электрода. Внутренний объем колбы заполнен инертным газом — ксеноном — под давлением 6—8 кгс/см2. Принцип работы ксеноновой лампы основан на свечении атомов ксенона в межэлектродном промежутке под действием приложенного электрического напряжения. Во время работы лампы давление газов внутри колбы повышается до 20—30 кгс/см2, благодаря чему спектральный состав излучаемого светового потока приближается к спектру дневного света. Яркость разряда в межэлектродном промежутке значительно превышает яркость нити лампы накаливания и составляет 200-1000 Мкд/м2.

Ксеноновые лампы могут работать как на постоянном, так и на переменном токе. В настоящее время в кинопроекционной аппаратуре применяются только лампы постоянного тока.

Ранее, в большинстве случаев ксеноновая лампа (рис. 19) работала в вертикальном положении (на данный момент широко применяются горизонтальные лампы), причем анод 2 располагается сверху. Анод имеет больший диаметр, чем катод 3, и делается более массивным, так как на нем выделяется значительно большая мощность и нагревается он сильнее.

Чтобы уменьшить нагрев колбы 1, особенно ее участков, расположенных вблизи анода, требуется интенсивное охлаждение — воздушное, а у мощных ламп (5 и 10 кВт) — водяное.

Разряд ксеноновой лампы имеет форму усеченного конуса, вытянутого по вертикали. Яркость по площади разряда распределяется неравномерно (рис. 20). По мере приближения к катоду она возрастает. Наибольшую яркость имеет зона разряда, расположенная в непосредственной близости к катоду (катодное пятно).

Для зажигания лампы требуется высокое напряжение 20— 30 кВ. На рис. 21 показана упрощенная электрическая, схема зажигания ксеноновой лампы. При замыкании контактов 1 сетевое напряжение 220 В подается на первичную обмотку повышающего трансформатора 2. Напряжение порядка 5 кВ, снимаемое со вторичной обмотки, подается к обкладкам конденсатора 3. Когда напряжение на обкладках конденсатора достигает определенной величины, происходит пробой воздушного промежутка разрядника 4; конденсатор разряжается на часть обмотки импульсного автотрансформатора 5. В контуре, образованном этим участком обмотки, разрядником и конденсатором, возникают высокочастотные колебания. При этом со всей обмотки импульсного автотрансформатора снимается напряжение порядка 20— 30 кВ. Под действием этого напряжения, приложенного к электродам ксеноновой лампы 6, через блокировочный конденсатор 7 происходит пробой межэлектродного промежутка, ионизация газа и возникает дуговой разряд, постепенно переходящий в газовый; лампа зажигается. После этого контакты 1 размыкаются; разряд поддерживается низким рабочим напряжением 20—30 В, подаваемым к лампе от электропитающего устройства.

Промышленность выпускает ксеноновые лампы мощностью от 500 до 10000 Вт. Лампы мощностью до 4000 Вт требуют воздушного охлаждения, а мощностью свыше 4000 Вт — воздушного и водяного охлаждения. Отечественные лампы с воздушным охлаждением имеют шифр ДКсШ (шаровые) или ДКсЭл — эллипсоидные, а с водяным охлаждением имеют шифр ДКсШРБ. Кроме буквенного обозначения в шифр лампы входит число, показывающее ее мощность в ваттах.

Ксеноновые лампы обладают хорошими характеристиками — высокой яркостью и световой отдачей, большим сроком службы и хорошей спектральной характеристикой излучения, благодаря этому они применяются во всей современной стационарной кинопроекционной аппаратуре.

Однако ксеноновые лампы имеют и некоторые недостатки. Так, вследствие большого давления ксенона внутри колбы возникает опасность ее разрыва. Поэтому при эксплуатации ламп следует соблюдать меры предосторожности: транспортировать, хранить и устанавливать лампу в кинопроекторе, не вынимая ее из специального защитного кожуха, защищать лицо щитком из оргстекла при установке лампы или при открывании фонаря кинопроектора.

При горении лампы кварцевая колба пропускает ультрафиолетовое излучение, выделяемое разрядом, что приводит к ионизации воздуха и образованию озона и окислов азота, которые при достаточно большой концентрации и длительном воздействии вредны для человека. Поэтому фонари кинопроекторов с ксеноновыми лампами требуют принудительной вытяжки для удаления образующихся газов.

Сложная система зажигания и необходимость принудительной вентиляции затрудняют применение ксеноновых ламп в передвижной кинопроекционной аппаратуре.

В настоящее время широко применяются ксеноновые лампы с горизонтальным расположением электродов, что позволяет использовать ее в сочетании с глубокими отражателями и обеспечивать существенное увеличение светового потока осветительно-проекционной системы. В большей своей массе эти лампы являются «безозонными» и не выделяют вредных газов.

Date: 2016-02-19; view: 439; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию