Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Вероятностные модели реальных сигналов
В качестве математической модели любого недетерминированного сигнала используется СП с подходящим образом выбранными вероятностными характеристиками. Телефонный сигнал нельзя считать гауссовским СП, т.к. наличие пауз при разговоре приводит к заметному увеличению вероятности появления значений процесса, близких к нулю (рисунок 9.2).
Рисунок 9.2 – График плотности распределения вероятности телефонного сигнала. Значение математического ожидания телефонного сигнала можно считать равным нулю. Дисперсия телефонного сигнала тем больше, чем громче говорит абонент. Среднеквадратическое отклонение определяется по формуле:
где Мощность телефонного сигнала распределяется в полосе частот от 300 до 3400 Гц (рисунок 9.3).
Рисунок 9.3 – Спектральная плотность мощности телефонного сигнала. Вероятностные характеристики вещательного сигнала, если он рассматривается как СП, в значительной мере идентичны соответствующим характеристикам телефонного сигнала. Сигнал изображения нельзя рассматривать как гауссовский СП, т.к. последний может принимать любые значения из бесконечного интервала от
Рисунок 9.4 – Спектральная плотность мощности ТВ сигнала. Телеграфный сигнал нельзя рассматривать как гауссовский СП, т.к. для каждого фиксированного момента времени этот сигнал может принимать лишь два значения:
Рисунок 9.5 – Распределение вероятностей телеграфного сигнала. Математическое ожидание телеграфного сигнала равно нулю, дисперсия – квадрату амплитуды (
Рисунок 9.6 – Спектральная плотность мощности телеграфного сигнала. В качестве вероятностной модели помех различного происхождения обычно используют белый шум, т.е. процесс с равномерным спектром (спектр 1 на рисунке). Все его спектральные составляющие имеют одинаковую интенсивность (спектр имеет постоянное значение
Рисунок 9.2 – Спектральные плотности мощности СП. В качестве вероятностной модели высокочастотных модулированных сигналов при любых видах модуляции обычно применяют узкополосный процесс, т.е. процесс, ширина спектра которого
Date: 2016-02-19; view: 634; Нарушение авторских прав |