Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Биодеградация токсичных соединений





Еще относительно недавно ни у кого не возни­кало сомнения в том, что окружающая среда — воздух, земля и вода — всегда будут эффективно «перерабатывать» бытовые, промышленные и сельскохозяйственные отходы. Теперь мы зна­ем, что это не так. Человечество столкнулось с двумя фундаментальными проблемами: пере­работкой отходов, постоянно образующихся в огромном количестве, и разрушением токсич­ных соединений, десятилетиями накапливав­шихся на свалках, в воде и почве.

Все промышленные отходы можно условно разделить на две категории:

1. Отходы производств основанных на использовании биологических материалов и процессов (продукты сельского хозяйства, пищевой и лесоперерабатывающей промышленности).

2. Отходы неприродных, синтетических веществ (химическая

промышленность).

Большинство отходов первой категории может легко перерабатываться и утилизоваться биологическим путем. Более того, многие виды отходов могут использоваться как субстрат для различных биотехнологических производств. Разработаны различные виды аэробной и анаэробной очистки сточных вод, которая является самым крупным, по объему, биотехнологическим производством.

Более сложной является ситуация с отходами второй категории. Большинство соединений, составляющих отходы, не встречаются в природе и поэтому “не знакомы” микроорганизмам – деструкторам. Но, если в их структуру входят функциональные группы, встречающиеся в природных соединениях, то они могут подвергаться, в разной степени, частичной биодеградации (биодеструкции) с потерей своих токсичных свойств. Однако это бывает не всегда. Часто процесс биодеструкции приводит к образованию других вредных веществ, иногда с еще большей токсичностью. Так дегалогенирование трихлорэтилена некоторыми почвенными бактериями приводит к образованию еще более токсичного и канцерогенного соединения – винилхлорида. Поэтому прежде чем внедрять процесс биоутилизации того или иного неприродного химического вещества необходимо тщательно исследовать всю цепочку его превращений, подобрать оптимальные штаммы микроорганизмов и условия проведения процесса. Однако это не всегда возможно, т.к. в таких процессах могут участвовать микробные сообщества, состоящие из большого количества членов (до нескольких десятков), комплексно воздействующих на молекулу разрушаемого соединения за счет поставки тех или иных ферментов и кометаболитов. Проследить всю цепочку превращений и подобрать стандартные условия в этом случае очень сложно или вообще невозможно. Все это существенно сдерживает внедрение биологических методов утилизации такого рода отходов.

Однако биологические методы переработки имеют целый ряд преимуществ перед термическими (сжигание, пиролиз) и химическими (химическая трансформация, комплексообразование и т.д.).

1. Высокая скорость и селективность ферментативных реакций.

2. Разнообразие ферментов, позволяющее микроорганизмам утилизовать широкий круг субстратов и возможность их приспособления (адаптации) к незнакомому субстрату за счет мутаций. Так недавно были обнаружены плесневые грибы, использующие в качестве источника питания фторопласт (тефлон) – вещество устойчивое к воздействию практически любого агрессивного химического вещества за счет наличия в нем большого количества прочных связей C-F. Особенно интересным является тот факт, что в тефлоне отсутствуют связи С-Н и С-О-Н, расщепление которых служит источником энергии практически для всех живых существ (гликолиз, цикл Кребса и др.). Предполагается, что энергию эти микроорганизмы получают за счет расщепления связи С-С линейной молекулы тефлона.

3. Возможность конструирования с помощью методов генной инженерии специальных микроорганизмов – деструкторов, оптимизированных для усвоения тех или иных конкретных соединений.

4. Меньшая стоимость переработки (затраты на оборудование, энергию, воду).

5. Большая экологическая безопасность.







Date: 2016-02-19; view: 586; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию