Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Подготовка информации для управляющих программ





Представление траектории обработки. Детали, обрабатываемые на станках с ЧПУ, можно рассматривать как геометрические объекты. При обработке детали инструмент и заготовка перемещаются относительно друг друга по определенной траектории Программа обработки дета ли задает (описывает) движение определенной точки инструмента — его центра (Р). Для концевой фрезы со сферическим торцом это центр полусферы для концевой цилиндрической, сверла, зенкера, развертки — центр основания для резцов — центр дуги окружности при вершине и т.д. (рис. 1.2). Если принять, что радиус инструмента во время обработки детали по контуру остается постоянным, то траектория центра инструмента при контурной обработке является эквидистантной контур) детали (рис. 1.2, а - е). Однако это встречается не всегда. Траектория движения центра инструмента может существенно отличаться от линий контура детали (рис. 1.2, ж - л), так как в противном случае эквидистантное перемещение инструмента или перемещение инструмента точно по контуру привело бы к погрешности обработки Поэтому в ряде случаев под эквидистантой понимают такую траекторию движения центра инструмента при которой обеспечивается обработка заданного контура.

Движение по эквидистанте относится только к траектории рабочих ходов. Перемещения центра инструмента при обработке детали могут быть также подготовительными и вспомогательными. Характер этих движений во многом зависит от задаваемого в начале программирования положения исходной (нуле вой) точки от расположения приспособления и т.д.

Из сказанною ясно, что для обработки детали по программе, прежде всего, необходимо определить рабочие подготовительные и вспомогательные траектории перемещения центра принятою для работы инструмента.

Относительно контура обрабатываемой детали траектория движения центра инструмента при обработке может располагаться по разному: совпадать с контуром, быть эквидистантной контуру, изменять положение относительно контура по определенному закону. Для полной обработки детали (для выполнения заданной операции) траектория движения центра инструмента должна быть непрерывной. Разработать (определить) ее сразу как единое целое практически очень трудно, поскольку в общем случае программируемая траектория является достаточно сложной, определяющей перемещения центра инструмента в пространстве. Поэтому в практике программирования траекторию инструмента представляют состоящей из отдельных, последовательно переходящих друг в друга участков, причем эти участки могут быть или участками контура детали, или участками эквидистанты.

Рис. 1.2 Схемы траекторий центра инструмента

1 - контур детали 2 - траектория движения центра инструмента

В общем случае участки траектории движения центра инструмента и траекторию в целом удобно представить графически, исходя из зафиксированного определенным образом положения контура обрабатываемой детали (рис. 1.3).

Отдельные участки контура детали и эквидистанты называются геометрическими элементами. К ним относятся отрезки прямых, дуги окружностей, кривые второго и высших порядков. Точки пересечения элементов или перехода одного элемента в другой находят как геометрические опорные (узловые) точки. Эти точки в большинстве случаев являются определяющими при задании положения элементов контура (эквидистанты) в пространстве. Это положение, так же как и величина и направление движения инструмента, задается в системе координат с определенной заданной нулевой точкой. Такая точка может быть у станка — нулевая точка станка (нуль станка) или у детали — нулевая точка детали (нуль детали). Она является началом системы координат данной детали

Нуль детали W (см. рис. 1.3) может быть задан относительно нуля станка М соответствующими координатами xMW, yMW. Свою систему координат имеет инструмент, приспособление. Естественно, что при программировании следует учитывать взаимосвязь всех систем координат.

В системе координат станка координатами хМО и уМО может быть задана исходная точка О, которая используется для начала работы по программе. Обычно с этой точкой перед началом работы совмещают центр инструмента.

В станках с ЧПУ наиболее употребительны прямоугольные (декартовы), цилиндрические и сферические системы координат (рис. 1.4).

В прямоугольной системе координатами некоторой точки А называются взятые с определенным знаком расстояния х, у и z от этой точки до трех взаимно перпендикулярных координатных плоскостей. Точка пересечения координатных плоскостей называется началом координат, а координаты х, у, z — соответственно абсциссой, ординатой и аппликатой.

В цилиндрической системе координат положение точки в пространстве задается полярными координатами: радиусом ρ и центральным углом φ (положение проекции точки на основной плоскости), а также аппликатой z — расстоянием от точки до основной плоскости.

В сферической системе координат точка задается длиной радиус-вектора R, долготой ψ и полярным углом θ.

Переход из одной системы координат в другую осуществляется путем несложного пересчета.

Таким образом, в определенной системе координат контур детали и траектория перемещения центра инструмента относительно этого контура могут быть представлены геометрическими элементами с опорными точками, заданными координатами или в пространстве, или на плоскости (рис. 1.5).


Рис. 1.3 Элементы траектории инструмента при программированной обработке


Рис. 1.4 Системы координат:

а — прямоугольная; б — цилиндрическая; в — сферическая

Рис. 1.5 Схема определения координат опорных точек контура детали (а) и траектории движения центра инструмента (б)

 

На траектории движения центра инструмента могут быть назначены также технологические опорные точки, т.е. точки, где изменяются какие-то технологические параметры, например подача инструмента и др., точки временного останова с указанием времени останова и т. д. (см. рис. 1.3).

При обработке детали инструмент может перемещаться или в одной плоскости — плоская обработка, при которой используются две управляемые координаты, или иметь сложное перемещение в пространстве — объемная обработка. Однако чаще всего объемные поверхности деталей обрабатывают строчками, каждая из которых является плоской кривой.

Опорные точки на траектории движения инструмента позволяют представить эту траекторию как определенную последовательность точек, проходимых центром инструмента (см. рис. 1.3) при обработке детали. Каждое из положений (каждая опорная точка) в выбранной системе координат может быть определено числами, например координатами. Сочетание таких чисел, определяющих ряд последовательных положений инструмента, или, иначе, ряд опорных точек траектории, и будет представлять основную часть программы работы станка, выраженную в числовом виде (см. рис. 1.5).

 

 

Date: 2016-02-19; view: 882; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию