Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Основные физические величины и законы. где – сила, с которой магнитное поле действует на элемент длины проводника с током , вектор совпадает с направлением тока
Закон Ампера , где – сила, с которой магнитное поле действует на элемент длины проводника с током , вектор совпадает с направлением тока, – вектор магнитной индукции. В скалярном виде , где – угол между векторами и . Сила Лоренца , где – сила, действующая на заряд , движущийся в магнитном поле со скоростью (сила Лоренца). В скалярном виде , где – угол между и . Связь магнитной индукции и напряженности магнитного поля где – магнитная постоянная, – магнитная проницаемость среды. Закон Био-Савара-Лапласа , где – напряженность магнитного поля, создаваемого элементом длины проводника с током ; – радиус-вектор, приведенный от к точке, в которой определяется напряженность поля. В скалярном виде , где – угол между векторами и . Из закона Био-Савара-Лапласа следуют формулы, определяющие: 1). напряженность магнитного поля в центре кругового проводника радиуса с током ; 2). Напряженность магнитного поля, создаваемого отрезком прямолинейного проводника с током, в точке, отстоящей от проводника на расстоянии , и определяемой углами и между направлением тока и радиус-векторами из начала и конца отрезка в эту точку ; 3). Напряженность магнитного поля, создаваемого «бесконечно длинным» () проводником с током на расстоянии от него ; 4). Напряженность магнитного поля внутри соленоида, имеющего витков, длину , много большую диаметра соленоида D . Поток вектора магнитной индукции (магнитный поток) через произвольную поверхность , где – угол между векторами и , – вектор нормали к площадке . Поток вектора магнитной индукции через площадку в однородном () магнитном поле соответственно . Закон электромагнитной индукции , где – э.д.с. индукции. Э.д.с. самоиндукции , где – индуктивность контура , где – магнитный поток, создаваемый в контуре током . Индуктивность соленоида (тороида) , где – число витков соленоида, – его длина, – площадь сечения. Работа по перемещению проводника с током в магнитном поле , где – магнитный поток, пересеченный движущимся проводником. Работа по перемещению замкнутого контура с током в магнитном поле , где – изменение магнитного потока, сцепленного с контуром. Работа перемещения контура при неизменном токе в нем , где и – начальный и конечный магнитный потоки через контур. Энергия магнитного поля, создаваемого током в замкнутом контуре, по которому течет ток . Объемная плотность энергии . Пример 1. В однородном магнитном поле с индукцией движется протон. Траектория его движения представляет собой винтовую линию с радиусом и шагом . Определить кинетическую энергию протона. Дано: ; ; ; ; . Найти: .
Рисунок 18. Решение. Кинетическая энергия протона (при ) . (1.1) – скорость света. Заряженная частица движется в магнитном поле по винтовой линии в случае, когда ее скорость составляет с направлением вектора индукции угол , не равный 900. В таком случае частица движется по окружности в плоскости, перпендикулярной линиям индукции со значением составляющей скорости и одновременно поступательно вдоль силовых линий со значением составляющей скорости . Как видно из рисунка 4.1 ; . . (1.2) Согласно второму закону Ньютона . Сила Лоренца перпендикулярна вектору скорости и сообщает протону нормальное ускорение . Отсюда , (1.3) где – радиус окружности. Шаг винтовой линии – это расстояние, пройденное протоном со скоростью вдоль силовой линии за время, равное периоду его вращения по окружности . Так как , то . Отсюда . (1.4) Подставляя формулы (1.3) и (1.4) в уравнение (1.2), находим . Отсюда . Как видно, . Таким образом, для кинетической энергии протона по формуле (1.1) получаем значение . Пример 2. По проводу, согнутому в виде квадрата со стороной , течет ток силой . Найти магнитную индукцию в точке пересечения диагоналей квадрата. Дано: ; . Найти: .
Рисунок 19. Решение. Расположим квадратный виток в плоскости чертежа (рисунок 19). Согласно принципу суперпозиции магнитных полей магнитная индукция поля квадратного витка будет равна геометрической сумме магнитных индукций полей, создаваемых каждой стороной квадрата в отдельности: . (2.1) В точке О пересечения диагоналей квадрата все векторы индукции будут направлены перпендикулярно плоскости витка «к нам». Кроме того, из соображений симметрии следует, что абсолютные значения этих векторов одинаковы: В1 = В2 = Вз = В4. Это позволяет векторное равенство (2.1) заменить скалярным равенством (2.2) Магнитная индукция В1 поля, создаваемого отрезком прямолинейного провода с током, выражается формулой . (2.3) Учитывая, что и (рисунок 4.2), формулу (2.3) можно переписать в виде . Подставив это выражение В1 в формулу (2.2), найдем . Заметим, что и (так как ), получим . Подставим в эту формулу числовые значения физических величин и произведем вычисления: . Пример 3. В однородном магнитном поле с индукцией равномерно вращается катушка, содержащая витков, с частотой . Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с. индукции вращающейся катушки. Дано: ; ; ; . Найти: . Решение. Согласно закону электромагнитной индукции . суммарный магнитный поток через все витки катушки (потокосцепление катушки) , где – число витков, – магнитный поток, пронизывающий каждый отдельный виток. При произвольном расположении катушки относительно магнитного поля . Учитывая, что круговая частота , получим . Тогда . при . Поэтому . Подставляя численные значения величин получим . Пример 4. Виток, в котором поддерживается постоянная сила тока , установился в однородном магнитном поле (). Диаметр витка . Какую работу А нужно совершить, чтобы повернуть виток относительно оси, совпадающей с диаметром, на угол ? Дано: ; ; ; ; . Найти: . Решение. Работу поворота витка с постоянным током определим по формуле . (4.1) магнитный поток через виток в произвольном положении , где – угол между нормалью к плоскости витка и направлением вектора магнитной индукции . В начальном (равновесном) положении нормаль совпадает с направлением вектора , то есть . После поворота, по условию задачи, . Таким образом ; . Подставляя эти выражении в уравнение (4.1), получим . И так как площадь витка равна , то окончательно имеем . Подставляя численные значения величин, получим . Работа внешних сил против сил магнитного поля. Пример 5. Соленоид имеет длину и сечение . При некоторой силе тока, протекающего по обмотке, в соленоиде создается магнитный поток . Чему равна энергия W магнитного поля соленоида? Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно. Дано: ; ; ; ; . Найти: . Решение. Энергию однородного магнитного поля определим по формуле , (5.1) где – объем соленоида: (5.2) – объемная плотность энергии магнитного поля . (5.3) Магнитный поток через каждый виток соленоида , так как нормаль к плоскости витков совпадает по направлению с вектором и, соответственно, и . Отсюда . Подставляя это выражение в уравнение (5.3), получим . (5.3) С учетом формул (5.2) и (5.3) уравнение (5.1) принимает вид . Подставляя численные значения величин, получаем . Задачи 4.01. Электрон движется в однородном магнитном поле перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если индукция поля , а радиус кривизны траектории . 4.02. Электрон движется по окружности в однородном магнитном поле напряженностью . Определить период Т обращения электрона. 4.03. Электрон движется в магнитном поле с индукцией по окружности радиусом . Какова кинетическая энергия Т электрона? Ответ дать в джоулях и электрон-вольтах. 4.04. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле индукцией под углом к направлению линий индукции. Определить силу Лоренца , если скорость частицы . 4.05. Заряженная частица с энергией движется в однородном магнитном поле по окружности радиусом . Определить силу , действующую на частицу со стороны поля. 4.06. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией . Определить момент импульса L, которым обладала частица при движении в магнитном поле, если траектория ее представляла дугу окружности радиусом . 4.07. Прямой провод длиной , по которому течет ток силой , движется в однородном магнитном поле с индукцией . Какую работу А совершат силы, действующие на провод со стороны поля, переместив его на , если направление перемещения перпендикулярно линиям индукции и длине провода? 4.08. Электрон, ускоренный разностью потенциалов , влетает в однородное магнитное поле под углом к направлению поля и начинает двигаться по винтовой линии. Индукция магнитного поля . Найти: 1) радиус витка винтовой линии; 2) шаг винтовой линии. 4.09. Заряженная частица прошла ускоряющую разность потенциалов и влетела в скрещенные под прямым углом электрическое () и магнитное () поля. Определить отношение заряда частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории. 4.10. Протон влетает в однородное магнитное поле под углом к направлению поля и движется по винтовой линии радиусом 1,5 см. Индукция магнитного поля . Найти кинетическую энергию протона. 4.11. По двум длинным параллельным проводам, расстояние между которыми , текут одинаковые токи . Определить индукцию В и напряженность Н магнитного поля в точке, удаленной от каждого провода на расстояние , если токи текут: а) в одинаковом направлении; б) в противоположных направлениях. 4.12. Два бесконечно длинных прямых проводника скрещены под прямым углом. По проводникам текут токи и . Расстояние между проводниками . Определить индукцию магнитного поля вточке, лежащей на середине общего перпендикуляра к проводникам. 4.13. По проводнику, согнутому в виде прямоугольника со сторонами и , течет ток силой . Определить напряженность H и индукцию В магнитного поля в точке пересечения диагоналей прямоугольника. 4.14. По контуру в виде равностороннего треугольника идет ток силой . Сторона треугольника . Определить магнитную индукцию В в точке пересечения высот. 4.15. Ток силой идет по проводнику, согнутому под прямым углом. Найти напряженность магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстояние . Считать, что оба конца проводника находятся очень далеко от вершины угла. 4.16. Магнитная стрелка помещена в центре кругового витка, плоскость которого расположена вертикально и составляет угол с плоскостью магнитного меридиана. Радиус окружности . Определить угол, на который повернется магнитная стрелка, если по проводнику пойдет ток силой (дать два ответа). Горизонтальную составляющую индукции земного магнитного поля принять равной . 4.17. По проводнику, изогнутому в виде окружности, течет ток. Напряженность магнитного поля в центре окружности . Не изменяя силы тока в проводнике, ему придали форму квадрата. Определить напряженность магнитного поля в точке пересечения диагоналей этого квадрата. 4.18. Проволочный виток радиусом расположен в плоскости магнитного меридиана. В центре витка установлена небольшая магнитная стрелка, могущая вращаться вокруг вертикальной оси. На какой угол отклонится стрелка, если по витку пустить ток силой ? Горизонтальную составляющую индукции земного магнитного поля принять равной . 4.19. Обмотка катушки сделана из проволоки диаметром 0,8 мм. Витки плотно прилегают друг к другу. Считая катушку достаточно длинной, найти напряженность магнитного поля внутри катушки при силе тока . 4.20. Бесконечно длинный провод образует круговую петлю, касательную к проводу. По проводу идет ток силой . Найти радиус петли, если известно, что напряженность магнитного поля в центре петли равна . 4.21. Рамка площадью равномерно вращается с частотой относительно оси, лежащей в плоскости рамки и перпендикулярной линиям индукции однородного магнитного поля (). Определить среднее значение э.д.с. индукции за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения. 4.22. Рамка, содержащая витков площадью равномерно вращается с частотой в магнитном поле напряженностью . Ось вращения лежит в плоскости рамки и перпендикулярна линиям напряженности. Определить максимальную э. д. с. индукции, возникающую в рамке. 4.23. Соленоид диаметром , имеющий витков, помещен в магнитное поле, индукция которого изменяется со скоростью . ось соленоида составляет с вектором магнитной индукции угол . Определить э.д.с. индукции, возникающей в соленоиде. 4.24. В магнитное поле, изменяющееся по закону , помещена квадратная рамка со стороной , причем нормаль к рамке образует с направлением поля угол . Определить э.д.с. индукции, возникающую в рамке в момент времени . 4.25. В однородном магнитном поле напряженностью , равномерно с частотой вращается стержень длиной так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить индуцируемую на концах стержня разность потенциалов. 4.26. Соленоид содержит витков. Сечение сердечника (из немагнитного материала) . По обмотке течет ток, создающий поле с индукцией . Определить среднее значение э.д.с. самоиндукции, которая возникает на зажимах соленоида, если ток уменьшается практически до нуля за время 4.27. Кольцо из алюминиевого провода () помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца , диаметр провода . Определить скорость изменения магнитного поля, если ток в кольце 4.28. Через катушку, индуктивность которой равна , протекает ток, изменяющейся по закону . Определить максимальное значение э.д.с. самоиндукции. 4.29. В однородном магнитном поле индукцией вращается с частотой стержень длиной . Ось вращения параллельна линиям индукции и проходит через середину стержня, перпендикулярно к его оси. Определить разность потенциалов на концах стержня. 4.30. В однородном магнитном поле, индукция которого , равномерно вращается рамка с угловой скоростью . Площадь рамки . Ось вращения находится в плоскости вращения рамки и составляет 300 с направлением силовых линий магнитного поля. Найти максимальную э.д.с. индукции во вращающейся рамке. 4.31. Индуктивность L соленоида, намотанного в один слой на немагнитный каркас, равна 0,2 мГн. Длина соленоида , диаметр . Определить число витков п, приходящихся на единицу длины соленоида. 4.32. На длинный картонный каркас диаметром уложенаоднослойная обмотка (виток к витку) из проволоки диаметром . Определить магнитный поток Ф, создаваемый таким соленоидом при силе тока . 4.33. Виток радиусом , по которому течет ток силой , свободно установился в однородном магнитном поле напряженностью . Виток повернули относительно диаметра на угол . Определить совершенную работу. 4.34. Тороид диаметром (по средней линии) и площадью сечения содержит витков. Вычислить энергию магнитного поля тороида при силе тока . Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно. 4.35. Определить плотность ω энергии магнитного поля в центре кольцевого проводника, имеющего радиус и содержащего витков. Сила тока в проводнике . 4.36. Соленоид сечением содержит витков. Индукция В магнитного поля внутри соленоида при силе тока равна . Определить индуктивность L соленоида. 4.37. В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью . Поддерживая в контуре постоянную силу тока , его переместили из поля в область пространства, где поле отсутствует. Определить индукцию B магнитного поля, если при перемещении контура была совершена работа . 4.38. Соленоид содержит витков. При силе тока магнитный поток . Определить энергию W магнитного поля соленоида. Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно. 4.39. Обмотка соленоида содержит витков на каждый сантиметр длины. При какой силе тока объемная плотность энергии магнитного поля будет равна ? Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно. 4.40. Плоский контур с током силой свободно установился в однородном магнитном поле с индукцией . Площадь контура . Поддерживая ток в контуре неизменным, его повернули относительно оси, лежащей в плоскости контура, на угол . Определить совершенную при этом работу.
Date: 2016-02-19; view: 652; Нарушение авторских прав |