Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Законы сохранения





Запишем уравнение (1.24) в виде

. (1.25)

Выражение (2.25) представляет собой уравнение движения частицы. Если его проинтегрировать, то можно найти траекторию частицы r = r (t, F). Однако часто это не является необходимым. Оказывается, уравнения Ньютона обладают тем свойством, что некоторые величины, характеризующие движение частицы, остаются неизменными во все время движения. О таких величинах принято говорить, что они сохраняются. Их также называют интегралами движения. Знание интегралов движения позволяет получить ряд важных следствий без фактического решения уравнений движения. Получим некоторые сохраняющиеся величины.

Перепишем уравнение (1.25) в виде

. (1.26)

Величина называется импульсом тела. Внеся величину m под знак дифференциала в (1.26), закон Ньютона можно записать в форме:

. (1.27)

Физический смысл импульса становится очевидным, если уравнение (1.27) проинтегрировать на конечном интервале времени от 0 до t:

. (1.28)

Изменение импульса служит мерой величины силы, действующей на тело в течение конечного промежутка времени. Численно величина импульса

. (1.29)

Рассмотрим тело или систему тел в отсутствие внешних сил. Система тел, на которую не действуют внешние силы (или векторная сумма этих сил равна нулю), является замкнутой. В этом случае F =0; как видно из уравнений (1.26) или (1.27),

, т.е. величина, (1.30)

остается постоянной во все время движения. Полученный результат представ­ляет собой закон сохранения импульса, который имеет место как для одного тела, так и для системы тел в отсутствие внешних сил.

В отсутствие внешних сил сохраняется еще одна скалярная величина. Если умножить уравнение (1.26) одновременно слева и справа на вектор скорости, в левой части окажется производная от полного дифференциала, и уравнение примет вид

. (1.31)

Пусть F = 0. Тогда постоянной во время движения является величина

. (1.32)

Она называется кинетической энергией частицы. При отсутствии внешних сил, т. е. в замкнутой системе, сохраняется кинетическая энергия как в случае одного тела, так и для системы тел. Когда на частицу действует внешняя сила F, кинетическая энергия не остается постоянной. В этом случае согласно (1.31) приращение кинетической энергии за время dt равно скалярному произведению . Величина dA = — это работа, совершаемая силой F на пути dr.

Проинтегрируем соотношение (1. 31) вдоль некоторой траектории от точки 1 до точки 2:

.

Левая часть представляет собой приращение кинетической энергии на пути между точками 1 и 2, а величина

(1.33)

есть работа силы на пути 1—2.

Таким образом, работа сил, действующих на частицу, расходуется на изменение ее кинетической энергии:

. (1.34)

Соответственно, изменение кинетической энергии частицы служит мерой работы, произведенной над частицей.

Если частица в каждой точке пространства подвержена действию других тел, то говорят, что эта частица находится в поле сил. В случае силового поля действие силы распределено по всему пространству. Рассмотрим такое поле сил, действие которого на частицу зависит только от положения частицы в пространстве. Такое поле можно описать с помощью некоторой скалярной функции φ(r), зависящей, а соответствии со сказанным, только от координат. Это случай специального, но часто встречаемого в природе потенциального поля, а функция φ(r), характеризующая поле, является потенциалом поля. Сила связана с потенциалом в каждой точке соотношением

, (1.35)

где постоянная определяется свойствами частицы, взаимодействующей с полем сил.

Подставим соотношение (1.35) в (1.33) и опять проинтегрируем вдоль траектории от точки 1 до точки 2. Получим

T2 - T1 + const2 - φ1) = О,

т.е. величина T2 + const· φ2 = T1 + const· φ1

остается постоянной при движении вдоль траектории. Таким образом, для частицы в потенциальном поле внешней силы сохраняется, т. е. является интегралом движения, величина

E = T + const ·φ(r). (1.36)

Величина U = const ·φ(r) называется потенциальной энергией частицы в поле φ(r), а выражение (1.36) представляет собой полную механическую энергию частицы

E = T + U. (1.37)

 

Физическая величина (краткая форма термина — «величина») применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.). Cуществуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные свойства материального мира. Механика базируется на трех основных величинах, теплотехника — на четырех, физика — на семи.


ГОСТ 8.417 устанавливает семь основных физических величин:

  • длина, м;
  • масса, кг;
  • время, с;
  • термодинамическая температура, К;
  • количество вещества, моль;
  • сила света, кд;
  • сила электрического тока, А.

Разме́рность физической величины — выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные. Размерность представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных, в общем случае вещественных) степенях, которые называются показателями размерности. Так, например, размерность скорости LT −1, где Т представляет собой размерность времени, а L — длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т. д.).

В механике размерность любой величины может быть выражена через расстояние (которое физики часто называют «длиной»), массу и время. Электрические и магнитные величины также могут быть выражены через эти три размерности с использованием, например, закона Кулона. Однако иногда бывает удобнее ввести для них дополнительные размерности. В Международной системе единиц (СИ) определены семь единиц основных физических величин, размерности которых считаются независимыми друг от друга. Поскольку система физических величин принципиально отличается от системы единиц, то в некоторых системах физических величин возможен иной перечень основных физических величин, чем в СИ.

Размерность физической величины зависит, вообще говоря, от используемого класса систем единиц. В частности, безразмерная величина в одном классе единиц может стать размерной в другом. Например, в СГСэлектрическая ёмкость измеряется в сантиметрах и отношение ёмкости сферического тела к его радиусу — безразмерная величина, тогда как в СИ это отношение не является безразмерным. Однако используемые на практике безразмерные числа (критерии подобия, например постоянная тонкой структуры в квантовой физике или числа Маха, Рейнольдса, Струхаля и др. в механике сплошных сред) как правило характеризуют относительное влияние тех или иных физических факторов и являются отношением различных слагаемых (с одинаковыми размерностями) в соответствующих уравнениях, поэтому, несмотря на то, что в разных системах их определения могут отличаться[1], они всегда будут безразмерными.







Date: 2016-02-19; view: 399; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию