Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Кинематика поступательного движения





При поступательном движении тела все точки тела движутся одинаково, и, вместо того чтобы рассматривать движение каждой точки тела, можно рассматривать движение только одной его точки.

Основные характеристики движения материальной точки: траектория движения, перемещение точки, пройденный ею путь, координаты, скорость и ускорение.

Линию, по которой движется материальная точка в пространстве, называют траекторией.

Перемещением материальной точки за некоторый промежуток времени называется вектор перемещения ∆r=r-r0, направленный от положения точки в начальный момент времени к ее положению в конечный момент.

Скорость материальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета. Вектор ускорения характеризует быстроту и направление изменения скорости материальной точки относительно тела отсчета.

 

Средняя скорость — векторная физическая величина равная отношению вектора перемещения к промежутку времени, за который происходит это перемещение:


Мгновенная скорость — векторная физическая величина, равная первой производной от радиус-вектора по времени:

Мгновенная скорость v есть векторная величина, равная первой производной радиуса - вектора движущейся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рисунок 1.2).

По мере уменьшение ∆t путь ∆S все больше будет приближаться к |∆r|, поэтому модуль мгновенной скорости:

 

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой аn. Вектор нормального ускорения направлен по радиусу кривизны траектории.

 

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

 

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

а= аτ + аn

 

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).


Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где a – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости ΔV = V - V0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость V0. В момент времени t2 тело имеет скорость V. Согласно правилу вычитания векторов найдём вектор изменения скорости ΔV = V - V0 Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

 

 

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Можно также ввести среднюю скорость по перемещению, которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если точка (тело) реально двигалась (но в конце промежутка времени вернулась в исходное положение).

Если перемещение происходило по прямой (причём в одном направлении), то средняя путевая скорость равна модулю средней скорости по перемещению.

 

Движение тел происходит в пространстве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Тело отсчета — произвольно выбранное тело, относительно которого определяется положение остальных тел.

Система отсчета — совокупность системы координат и часов, связанных с телом отсчета.

Наиболее употребительная система координат — декартовая — ортонормированный базис которой образован тремя единичными по модулю и взаимно ортогональными векторами i j k r r r,,, проведенными из начала координат.

Положение произвольной точки M характеризуется радиусом-вектором R r, соединяющим начало координат O с точкой M. r x i y j z k r r r r = + +, r = r = x 2 + y 2+ z 2 r

Движение материальной точки полностью определено, если декартовы координаты материальной точки заданы в зависимости от времени: x = x (t) y = y (t) z = z (t)

Эти уравнения называются кинематическими уравнениями движения точки. Они эквивалентны одному векторному уравнению движения точки.

Линия, описываемая движущейся материальной точкой (или телом) относительно выбранной системы отсчета называется траекторией. Уравнение траектории можно получить, исключив параметр t из кинематических уравнений. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Длиной пути точки называется сумма длин всех участков траектории, пройденных этой точкой за рассматриваемый промежуток времени s = s (t). Длина пути — скалярная функция времени.

Вектор перемещения r r r 0 r r r = — вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

 

Линию, по которой движется материальная точка в пространстве, называют траекторией ее движения. Иными словами, траекторией движения называют совокупность всех последовательных положений, занимаемых материальной точкой при ее движении в пространстве.

 

Одним из основных понятий механики является понятие материальной точки, что означает тело, обладающее массой, размерами которого можно пренебречь при рассмотрении его движения. Движение материальной точки — простейшая задача механики, которая позволит рассмотреть более сложные типы движений.

Перемещение материальной точки происходит в пространстве и изменяется со временем. Реальное пространство трехмерно, и положение материальной точки в любой момент времени полностью определяется тремя числами — ее координатами в выбранной системе отсчета. Число независимых величин, задание которых необходимо для однозначного определения положения тела, называется числом его степеней свободы. В качестве системы координат выберем прямоугольную, или декартову, систему координат. Для описания движения точки, кроме системы координат, необходимо еще иметь устройство, с помощью которого можно измерять различные отрезки времени. Такое устройство назовем часами. Выбранная система координат и связанные с ней часы образуют систему отсчета.

Декартовы координаты X, Y, Z определяют в пространстве радиус-вектор z, острие которого описывает при его изменении со временем траекторию материальной точки. Длина траектории точки представляет собой величину пройденного пути S (t). Путь S (t)— скалярная величина. Наряду с величиной пройденного пути, перемещение точки характеризуется направлением, в котором она движется. Разность двух радиус-векторов, взятых в различные моменты времени, образует вектор перемещения точки (рис.).

Для того чтобы характеризовать, как быстро меняется положение точки в пространстве, пользуются понятием скорости. Под средней скоростью движения по траектории за конечное время D t понимают отношение пройденного за это время конечного пути D S ко времени:

. (1.1)

Скорость движения точки по траектории — скалярная величина. Наряду с ней можно говорить о средней скорости перемещения точки. Эта скорость — величина, направленная вдоль вектора перемещения,

. (1.2)

Если моменты времени t1, и t2 бесконечно близки, то время D t бесконечно мало и в этом случае обозначается через dt. За время dt точка проходит бесконечно малое расстояние dS. Их отношение образует мгновенную скорость точки

. (1.3)

Производная радиус-вектора r по времени определяет мгновенную скорость перемещения точки.

. (1.4)

Поскольку перемещение совпадает с бесконечно малым элементом траектории dr = dS, то вектор скорости направлен по касательной к траектории, а его величина:

. (1.5)

На рис. показана зависимость пройденного пути S от времени t. Вектор скорости v (t) направлен по касательной к кривой S (t) в момент времени t. Из рис. видно, что угол наклона касательной к оси t равен

.

Интегрируя выражение (1.5) в интервале времени от t0 до t, получим формулу, позволяющую вычислить путь, пройденный телом за время t - t0 если известна зависимость от времени его скорости v (t)

 

. (1.6)

Геометрический смысл этой формулы ясен из рис. По определению интеграла пройденный путь представляет собой площадь, ограниченную кривой v = v (t) в интервале от t0 до t. В случае равномерного движения, когда скорость сохраняет свое постоянное значение во все время движе­ния, v = const; отсюда следует выражение

, (1.7)

где S0 ‑ путь, пройденный к начальному времени t0.

Производную скорости по времени, которая является второй производной по времени от радиус-вектора, называют ускорением точки:

. (1.8)

Вектор ускорения а направлен вдоль вектора приращения скорости dv. Пусть а = const. Этот важный и часто встречаемый случай носит название равноускоренного или равнозамедленного (в зависимости от знака величины а) движения. Проинтегрируем выражение (1.8) в пределах от t = 0 до t:

(1.9)

(1.10)

и используем следующие начальные условия: .

Таким образом, при равноускоренном движении

. (1.11)

В частности, при одномерном движении, например вдоль оси X, . Случай прямолинейного движения изображен на рис. При больших временах зависимость координаты от времени представляет собой параболу.

В общем случае движение точки может быть криволинейным. Рассмотрим этот тип движения. Если траектория точки произвольная кривая, то скорость и ускорение точки при ее движении по этой кривой меняются по величине и направлению.

Выберем произвольную точку на траектории. Как всякий вектор, вектор ускорения можно представить в виде суммы его составляющих по двум взаимно перпендикулярным осям. В качестве одной из осей возьмем направление касательной в рассматриваемой точке траектории, тогда другой осью окажется направление нормали к кривой в этой же точке. Составляющая ускорения, направленная по касательной к траектории, носит название тангенциального ускорения at, а направленная ей перпендикулярно — нормального ускорения an.

Получим формулы, выражающие величины at, и an через характеристики движения. Для простоты рассмотрим вместо произвольной криволинейной траектории плоскую кривую. Окончательные формулы остаются справедливыми и в общем случае неплоской траектории.

Благодаря ускорению скорость точки приобретает за время dt малое изменение dv. При этом тангенциальное ускорение, направленное по касательной к траектории, зависит только от величины скорости, но не от ее направления. Это изменение величины скорости равно dv. Поэтому тангенциальное ускорение может быть записано как производная по времени от величины скорости:

. (1.12)

С другой стороны, изменение dvn, направленное перпендикулярно к v, характеризует только изменение направления вектора скорости, но не его величины. На рис. показано изменение вектора скорости, вызванное действием нормального ускорения. Как видно из рис. , и, таким образом, с точностью до величины второго порядка малости величина скорости остается неизменной v = v'.

Найдем величину an. Проще всего это сделать, взяв наиболее простой случай криволинейного движения — равномерное движение по окружности. При этом at =0. Рассмотрим перемещение точки за время dt по дуге dS окружности радиуса R.

Скорости v и v', как отмечалось, остаются равными по величине. Изображенные на рис. треугольники оказываются, таким образом, подобными (как равнобедренные с равными углами при вершинах). Из подобия треугольников следует , откуда находим выражение для нормального ускорения:

. (1.13)

Формула для полного ускорения при криволинейном движении имеет вид:

. (1.14)

Подчеркнем, что соотношения (1.12), (1.13) и (1.14) справедливы для всякого криволинейного движения, а не только для движения по окружности. Это связано с тем, что всякий участок криволинейной траектории в достаточно малой окрестности точки можно приближенно заменить дугой окружности. Радиус этой окружности, называемый радиусом кривизны траектории, будет меняться от точки к точке и требует специального вычисления. Таким образом, формула (1.14) остается справедливой и в общем случае пространственной кривой.

 

 

2. Кинематические характеристики вращательного движения вокруг неподвижной оси: угловая скорость, угловое ускорение.

 

Движение твердого тела, при котором две его точки О и О ' остаются неподвижными, называется вращательным движением вокруг неподвижной оси, а неподвижную прямую ОО ' называют осью вращения.
Пусть абсолютно твердое тело вращается вокруг неподвижной оси ОО ' (рис. 2.12).

Рис. 2.12

Проследим за некоторой точкой М этого твердого тела. За время dt точка М совершает элементарное перемещение d r.
При том же самом угле поворота d φ, другая точка, отстоящая от оси на большее или меньшее расстояние, совершает другое перемещение. Следовательно, ни само перемещение некоторой точки твердого тела, ни первая производная , ни вторая производная не могут служить характеристикой движения всего твердого тела.
За это же время dt радиус-вектор R, проведенный из точки 0 ' в точку М, повернется на угол d φ. На такой же угол повернется радиус-вектор любой другой точки (т.к. тело абсолютно твердое, в противном случае расстояние между точками должно измениться).
Угол поворота d φ характеризует перемещение всего тела за время dt.
Удобно ввести – вектор элементарного поворота тела, численно равный d φ и направленный вдоль оси вращения ОО ' так, чтобы, глядя вдоль вектора, мы видели вращение по часовой стрелке (направление вектора и направление вращения связаны «правилом буравчика»).
Элементарные повороты удовлетворяют обычному правилу сложения векторов:

 

Угловая скорость вращения тела

Угловой скоростью тела в данный момент t называется величина, к которой стремится средняя угловая скорость , если стремится к нулю.

Угловая скорость твердого тела является первой производной от угла поворота по времени.

Размерность: [радиан/время]; [1/время]; [1/сек = ].

Угловую скорость можно изображать вектором. Вектор угловой скорости направляют по оси вращения в ту сторону, откуда вращение видно против хода часовой стрелки.

Если угловая скорость не является постоянной величиной, то вводят еще одну характеристику вращения - угловое ускорение.

Угловое ускорение характеризует изменение угловой скорости тела с течением времени.

Если за промежуток времени угловая скорость получает приращение , то среднее угловое ускорение равно

вращение, -один из простейших видов движения твёрдого тела. В. д. вокруг неподвижной оси - движение, при к-ром все точки тела, двигаясь в параллельных плоскостях, описывают окружности с центрами, лежащими на одной неподвижной прямой, перпендикулярной к плоскостям этих окружностей и наз. осью вращения. Скорость произвольной точки тела v = [w, r], где w - угловая скорость тела, г - радиус-вектор, проведённый в точку из центра описываемой ею окружности. Угловое ускорение тела e = М/I, где М - момент внеш. сил относительно оси вращения, I - момент инерции тела относительно той же оси.

В. д. вокруг неподвижной точки - движение, при к-ром все точки тела движутся по поверхностям концентрич. сфер с центрами в неподвижной точке. В каждый момент времени это движение можно рассматривать как вращение вокруг мгновенной оси вращения, проходящей через неподвижную точку. Скорость произвольной точки тела v = [to, г], здесь г - радиус-вектор, проведённый в точку из неподвижной точки тела. Основной закон динамики: dL/dt = М, где L - момент импульса тела относительно неподвижной точки, М - момент относительно той же точки всех внеш. сил, приложенных к телу, наз. главным моментом внешних сил. Этот закон справедлив также для вращения твёрдого тела вокруг его центра инерции независимо от того, покоится последний или движется произвольно. Теория В. д. имеет многочисл. приложения в небесной механике, внеш. баллистике, теории гироскопа, теории машин и механизмов.

 

Пройденный путь S, перемещение dr, скорость v, тангенциальное и нормальное ускорение at, и an, представляют собой линейные величины. Для описания криволинейного движения наряду снимиможно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота φ вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота φ является скаляром, бесконечно малый поворот dφ — векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то ω = const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2π, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

. (1.16)

Число оборотов в единицу времени есть величина, обратная периоду, — циклическая частота вращения

ν =1/T. (1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dφ. Подставив его в (1.15), находим

v = ωr. (1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы ω и v, следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

. (1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение — производная по времени от вектора угловой скорости ω (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18),(1.12) и (1.13), получаем

at = β·R, a =ω2·R. (1.20)

Таким образом, для полного ускорения имеем

. (1.21)

Величина β играет роль тангенциального ускорения: если β = 0.полное ускорение при вращении точки не равно нулю, a =R·ω2 ≠ 0.

 

 

3. Динамика поступательного движения. Законы Ньютона. (Савельев И.В. Т.1 § 7, 9, 11). Основные физические величины и их размерности. (Савельев И.В. Т.1 § 10). Виды сил в механике. (Савельев И.В. Т.1 § 13–16).

 

Date: 2016-02-19; view: 1900; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию