Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Анализ сетей Петри
Анализ сложных систем на базе сетей Петри можно выполнять посредством имитационного моделирования СМО, представленных моделями сетей Петри. При этом задают входные потоки заявок и определяют соответствующую реакцию системы. Выходные параметры СМО рассчитывают путем обработки накопленного при моделировании статистического материала. Возможен и другой подход к использованию сетей Петри для анализа объектов, исследуемых на системном уровне. Он не связан с имитацией процессов и основан на исследовании таких свойств сетей Петри, как ограниченность, безопасность, сохраняемость, достижимость, живость. Ограниченность (или К-ограниченность) имеет место, если число меток в любой позиции сети не может превысить значения К. При проектировании автоматизированных систем определение К позволяет обоснованно выбирать емкости накопителей. Возможность неограниченного роста числа меток свидетельствует об опасности неограниченного роста длин очередей. Безопасность— частный случай ограниченности. Конкретно безопасность соответствует 1-ограниченности. Если для некоторой позиции установлено, что она безопасна, то ее можно представлять одним триггером. Сохраняемость характеризуется постоянством загрузки ресурсов, т.е.
где Ni – число маркеров в i- й позиции; Ai – весовой коэффициент. ДостижимостьМk → Мj характеризуется возможностью достижения маркировки Мj из состояния сети, характеризуемого маркировкой Мk. Живость сети Петри определяется возможностью срабатывания любого перехода при функционировании моделируемого объекта. Отсутствие живости означает либо избыточность аппаратуры в проектируемой системе, либо свидетельствует о возможности возникновения зацикливаний, тупиков, блокировок. В основе исследования перечисленных свойств сетей Петри лежит анализ достижимости. Один из методов анализа достижимости любой маркировки из состояния М0 – построение графа достижимости. Начальная вершина графа отображает М0, а остальные вершины соответствуют маркировкам. Дуга из Мi, в Мj означает событие Мi → Мj и соответствует срабатыванию перехода t. В сложных сетях граф может содержать чрезмерно большое число вершин и дуг. Однако при построении графа можно не отображать все вершины, так как многие из них являются дублями (действительно, от маркировки Мk всегда порождается один и тот же подграф вне зависимости от того, из какого состояния система пришла в Мk). На рис. 5.18 показана сеть Петри к примеру с одной рабочей станцией и N пользователями. Граф достижимости для данной сети показана на рис. 5.19.
Рис. 5.18. Сеть Петри к примеру 1
На рисунке 5.19 вершины графа изображены в виде маркировок, дуги помечены срабатывающими переходами. Данная сеть явно обладает свойством живости, так как срабатывают все переходы, а тупики отсутствуют.
Рис. 5.19. Граф достижимости сети Петри к примеру 1
Пример 3. Сеть Петри для двухпроцессорной вычислительной системы с общей памятью и ее граф достижимости представлены на рис. 5.20. Сеть является живой: все разметки достижимы.
Рис. 5.20. Сеть Петри и ее граф достижимости к примеру 2 Вопросы к разделу 5.2
Date: 2016-02-19; view: 560; Нарушение авторских прав |