Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задача 3. 3а). Степень колеблемости признака определяется по значению коэффициента вариации Vsв соответствии с оценочной шкалой колеблемости признака:
3а). Степень колеблемости признака определяется по значению коэффициента вариации V s в соответствии с оценочной шкалой колеблемости признака: 0%<V s 40% - колеблемость незначительная; 40%< V s 60% - колеблемость средняя (умеренная); V s >60% - колеблемость значительная. Вывод: Для признака Среднегодовая стоимость основных производственных фондов показатель V s =………….. Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ……………………………….. Для признака Выпуск продукции показатель V s =…………. Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ……………………………….. 3б). Степень однородности совокупности по изучаемому признакудля нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V s. Если V s 33%, то по данному признаку расхождения между значениями признака невелико. Если при этом единицы наблюдения относятся к одному определенному типу, то изучаемая совокупность однородна. Вывод: Для признака Среднегодовая стоимость основных производственных фондов показатель , следовательно, по данному признаку выборочная совокупность ………………………….. Для признака Выпуск продукции показатель , следовательно, по данному признаку выборочная совокупность ………………………….. 3в). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируется табл.9 (с конкретными числовыми значениями границ диапазонов). Таблица 9 Распределение значений признака по диапазонам рассеяния признака относительно
На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений: 68,3% значений располагаются в диапазоне (), 95,4% значений располагаются в диапазоне (), 99,7% значений располагаются в диапазоне (). Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному. Расхождение с правилом «трех сигм»может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон () или значительно более 5% значения хi выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному. Вывод: Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному. Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному. Задача 4. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков. Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V s признаков. Вывод: Так как V s для первого признака больше (меньше), чем V s для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака. Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2. Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ). 1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения. Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному. 2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo, Me) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения. Нормальное распределение является симметричным, и для него выполняются соотношения: =Mo=Me Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу. 3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону. Вывод: 1.Гистограмма является одновершинной (многовершинной). 2. Распределение приблизительно симметрично (существенно асимметрично), так как параметры , Mo, Me отличаются незначительно (значительно): =.............., Mo=.............., Me=.............. 3. “Хвосты” распределения не очень длинны (являются длинными), т.к. согласно графе 5 табл.9…..……% вариантов лежат за пределами интервала ()=(………………;…………….) млн. руб. Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному. II. Статистический анализ генеральной совокупности Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10. Таблица 10 Описательные статистики генеральной совокупности
Для нормального распределения справедливо равенство RN=6 s N. В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности. Ожидаемый размах вариации признаков RN: - для первого признака RN =………..............., - для второго признака RN =………............... Соотношениемежду генеральной и выборочной дисперсиями: - для первого признака ……, т.е. расхождение между дисперсиями незначительное (значительное); -д ля второго признака ……, т.е. расхождение между дисперсиями незначительное (значительное). Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности. Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки(ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность = | - | определяет ошибку репрезентативности для средней величины признака. Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки. 1. Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение s выборочной средней от математического ожидания M[ ] генеральной средней . Для изучаемых признаков средние ошибки выборки даны в табл. 3: - для признака Среднегодовая стоимость основных производственных фондов =………………., - для признака Выпуск продукции = ……………….. 2. Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности. Для уровней надежности P=0,954; P=0,683 оценки предельных ошибок выборки даны в табл. 3 и табл. 4. Для генеральной средней предельные значения и доверительные интервалы определяются выражениями: , Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11. Таблица 11 Предельные ошибки выборки и ожидаемые границы для генеральных средних
Вывод: Увеличение уровня надежности ведет к расширению (сужению) ожидаемых границ для генеральных средних. Задача 3. Рассчитанныев табл.3значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10. 1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения. Если асимметрия правосторонняя (As >0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство > Me>Mo, что означает преимущественное появление в распределении более высоких значений признака (среднее значение больше серединного Me и модального Mo). Если асимметрия левосторонняя (As <0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство < Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модального Mo). Чем больше величина | As |, тем более асимметрично распределение. Оценочная шкала асимметрии: | As | 0,25 - асимметрия незначительная; 0,25<| As | 0,5 - асимметрия заметная (умеренная); | As |>0,5 - асимметрия существенная. Вывод: Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная (заметная, существенная)левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ………………………………………………………………………………………… Для признака Выпуск продукции наблюдается незначительная (заметная, существенная)левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ………………………………………………………. ………………………………………………………………………………………… 2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой. Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений. Если Ek >0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине. Если Ek <0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а рассеяны по всему диапазону от xmax до xmin. Для нормального распределения Ek =0. Чем больше абсолютная величина | Ek |, тем существеннее распределение отличается от нормального. При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения. Вывод: 1. Так как для признака Среднегодовая стоимость основных производственных фондов Ek> 0 ( Ek< 0 ), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek =|…........|) Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения. 2.Так как для признака Выпуск продукции Ek> 0 ( Ek< 0 ), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek =|….........|).Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения. III. Экономическая интерпретация результатов статистического исследования предприятий [2] 1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей? Предприятия с резко выделяющимися значениями показателей приведены в табл.2. После их исключения из выборки оставшиеся 30 предприятий являются типичными (нетипичными) по значениям изучаемых экономических показателей. 2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных производственных фондов и выпуска продукции? Ответ на вопрос следует из анализа данных табл.9, где приведен диапазон значений признака ( ), содержащий наиболее характерные для предприятий значения показателей. Для среднегодовой стоимости основных производственных фондов наиболее характерные значения данного показателя находятся в пределах от...............………млн. руб. до................…….млн. руб. и составляют..........% от численности совокупности. Для выпуска продукции наиболее характерные значения данного показа-теля находятся в пределах от...............……. млн. руб. до …..................млн. руб. и составляют...........% от численности совокупности. 3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей? Ответы на вопросы следуют из значения коэффициента вариации (табл.8), характеризующего степень однородности совокупности (см. вывод к задаче 3б). Максимальное расхождение в значениях показателей определяется размахом вариации Rn. (табл.8). Для среднегодовой стоимости основных производственных фондов различия в значениях показателя значительны (незначительны). Максимальное расхождение в значениях данного показателя........................млн. руб. Для выпуска продукции различия в значениях показателя значительны (незначительны). Максимальное расхождение в значениях данного показателя........................млн. руб. 4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных производственных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия? Структура предприятий представлена в табл.7 Рабочего файла. Предприятия с наиболее типичными значениями показателя входят в интервал от.....................млн. руб. до........................млн. руб. Их удельный вес...........%. Это предприятия №№................................................................................ Предприятия с наибольшими значениями показателя входят в интервал от.....................млн. руб. до.......................млн. руб. Их удельный вес...........%. Это предприятия №№...................................................................................................... Предприятия с наименьшими значениями показателя входят в интервал от.....................млн. руб. до........................млн. руб. Их удельный вес...........%. Это предприятия №№.............................................................................................. 5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности? Ответ на вопрос следует из вывода к задаче 5 и значения коэффициента асимметрии (табл.8). Распределение предприятий на группы по среднегодовой стоимости основных производственных фондов носит закономерный характер, близкий к нормальному (незакономерный характер). В совокупности преобладают предприятия с более высокой (низкой) стоимостью основных фондов. 6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать? Ответ на первый вопрос следует из данных табл.11. Максимальное расхождение в значениях показателя определяется величиной размаха вариации RN. По корпорации в целом ожидаемые с вероятностью 0,954 средние величины показателей находятся в интервалах: для среднегодовой стоимости основных производственных фондов - от.........................млн. руб. до.........................млн. руб.; для выпуска продукции - от......................млн. руб. до......................млн. руб.; Максимальные расхождения в значениях показателей: для среднегодовой стоимости основных производственных фондов -...................... млн. руб.; для выпуска продукции -.......................млн. руб.
Date: 2016-02-19; view: 733; Нарушение авторских прав |