Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Ресурсы управления и качество системы
В реальности оказывается, что имеющиеся ресурсы не всегда позволяют обеспечить полное выполнение этих условий. Поэтому имеют место принципиально разные ситуации в зависимости от того, в какой степени обеспечено ресурсами управление; системы при этом выступают как качественно различные объекты управления. Это и отражено в классификации систем, приведенной на рис. 1.4. Рис.1.4. Классификация систем по степени ресурсной обеспеченности управления
Рассмотрим, например, энергетические затраты на актуализацию модели и выработку управления. Обычно они настолько малы по сравнению с количеством энергии, потребляемой или производимой в управляемой системе, что их просто не принимают во внимание. Представим себе случай, когда, во-первых, управляющая и управляемая системы питаются от одного ограниченного источника энергии, и, во-вторых, энергопотребление обеих систем имеет одинаковый порядок: возникает интересный и нетривиальный класс задач о наилучшем распределении энергии между ними. С подобными задачами приходится иметь дело не часто, но в ответственных случаях: выполнение энергоемких задач автономными системами (например, космическими аппаратами или исследовательскими роботами), некоторые эксперименты в физике частиц высоких энергий и т.п. Следующее деление систем связано с материальными ресурсами, затрачиваемыми на актуализацию модели. В случае моделирования на ЭВМ это объем памяти и машинное время; такие ресурсы лимитируют возможности решения задач большой размерности в реальном масштабе времени. К подобным задачам приводится моделирование ряда экономических, метеорологических, организационно-управленческих, нейрофизиологических и других систем. Системы, моделирование которых затруднительно вследствие их размерности, называются большими. Существует два способа перевода больших систем в разряд малых: разрабатывать более мощные вычислительные средства либо осуществлять декомпозицию многомерной задачи на совокупность связанных задач меньшей размерности (если природа системы это позволяет). Большая система, управляемая система, рассматриваемая как совокупность взаимосвязанных управляемых подсистем, объединённых общей целью функционирования. Примерами больших систем могут служить: энергосистема, включающая природные источники энергии (реки, месторождения химического или ядерного горючего, солнечную и ветровую энергию), электростанции, преобразовательные подстанции, обслуживающий персонал, линии передачи энергии, потребителей энергии; производственное предприятие, куда входят источники снабжения сырьём и энергией, персонал, технологическое оборудование, средства его ремонта, техническая документация, финансы, сбыт продукции, учёт и отчётность; торговая сеть, включающая поставщиков товаров, склады, торговые точки, персонал, финансы, учёт и отчётность; живой организм с его системами питания, дыхания, движения, нервной и гуморальной регуляции, восстановления разрушающихся элементов (клеток) и воспроизведения дочерних организмов. При системном подходе, с целью изучения и совершенствования больших систем используются только такие методы, которые не игнорируют наличия тесной взаимосвязи между большим числом факторов, определяющих поведение рассматриваемой системы; учитывается большая или меньшая неопределённость поведения системы в целом и отдельных её частей как результат действия случайных факторов и участия в системе людей; принимается во внимание взаимовлияние системы и окружающей её среды; учитываются изменения во времени свойств системы и внешней среды. Такой подход эффективен при исследовании сложных технических, экономических и биологических систем, для которых оказываются недостаточными традиционные методы, основанные на поочерёдном изучении отдельных черт системы или отдельных явлений или на далеко идущем упрощении объекта рассмотрения. Теория больших систем развивается в направлении разработки следующих проблем: 1. Проблема языка, состоящая в формировании системы понятий, необходимых и достаточных для обсуждения вопросов, относящихся к больших системам, и для описания выявленных фактов и закономерностей, поскольку любое научное направление не может существовать и развиваться без языка, в терминах которого формулируются его идеи и методы; 2. Проблема модели, включающая все задачи построения идеализированных (упрощённых) моделей реальных систем, пригодных для теоретического и экспериментального изучения их свойств. Основные задачи здесь сводятся к тому, чтобы заменить реальные системы, исследовать которые невозможно вследствие их большой сложности, системами более простыми и доступными для теоретических исследований. Главная трудность состоит в том, что создаваемые модели должны быть достаточно сложными, чтобы их свойства в нужной мере соответствовали свойствам оригиналов, и в то же время настолько простыми, чтобы их можно было описать и решать нужные задачи, пользуясь составленными описаниями. Отыскание компромисса между этими противоречиями — часто очень трудная задача, которую пока удалось решить лишь для нескольких относительно узких классов систем; 3. Проблема декомпозиции — расчленения исходной системы на относительно обособленные части. Задача управления большой системы существенно упрощается, если представить ее в виде некоторого множества задач управления частями системы. При этом, однако, приходится преодолевать трудности, связанные с выбором способа декомпозиции, который обеспечивал бы необходимое упрощение процедуры решения, но не вызывал бы слишком больших погрешностей из-за отбрасывания некоторых связей при расчленении системы на части; 4. Проблема агрегирования — объединения нескольких показателей одним, сводным, с целью упрощения решения задач управления большой системы; так же как и декомпозиция, имеет целью преодоление «барьера многомерности». Она заключается в выборе такого объединения показателей, которое существенно облегчило бы решение задач управления, но не приводило бы к недопустимым ошибкам, возникающим из-за уменьшения детальности описания системы; 5. Проблема стратегии — выбора способа оценки состояния системы и среды и выработки программы управляющих воздействий, обеспечивающей наилучшее достижение целей управления. Главные трудности в формировании стратегии управления связаны с необходимостью прогнозирования изменений системы и среды, которое принципиально не может быть точным. Наряду с перечисленными фундаментальными проблемами создание и использование большая система требует решения ряда прикладных задач — функциональных и операционных. К функциональным задачам относятся мероприятия, обеспечивающие выполнение системой её назначения и поддержание её работоспособности. Операционные задачи направлены на решение вопросов планирования комплексов операций, управления ресурсами, запасами и развитием систем. Управление большой системой основывается на совместном участии в процессе людей и технических средств, основу которых составляют ЭВМ и средства сбора, передачи, представления и хранения информации. Управленческий персонал в совокупности с техническими средствами образует автоматизированную систему управления, которая выполняет функции: информационно-справочные, планирования, учёта, отчётности, оперативного управления, управления ресурсами и запасами. При этом выполнение формализуемых операций возлагается на ЭВМ, а принятие решений на основе неформальных методов — на руководителей. Управление большой системой строится, как правило, в виде иерархической системы, высший орган которой управляет несколькими подразделениями низшей ступени, каждой из которых, в свою очередь, подчинены подразделения ещё более низкой ступени и т.д. Такая структура управления позволяет использовать преимущества централизованных и децентрализованных систем и в значительной мере освободиться от их недостатков. Характерная особенность современного направления развития техники управления большими системами — слияние систем управления технологическими процессами и систем организационного управления в объединённые системы управления, в которых обеспечивается наиболее эффективное и экономное использование информации и технических средств.
Date: 2015-05-23; view: 1521; Нарушение авторских прав |