Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Частотное управление асинхронным двигателем
Использование асинхронного двигателя в регулируемом электроприводе представляет особый интерес, т.к. АД является наиболее простым, дешевым и надежным двигателем. Возможности его регулирования, аналогичные возможностям регулирования ДНВ изменением напряжения на якоре, обеспечиваются изменением частоты напряжения и тока статорной обмотки. Для реализации этой возможности питание двигателя необходимо осуществлять от управляемого преобразователя частоты. В качестве преобразователей частоты могут использоваться электромашинные и статические преобразователи. К электромашинным преобразователям относятся синхронные генераторы, приводимые во вращение регулируемым двигателем постоянного тока, и асинхронные преобразователи частоты, вращаемые к.з. АД. К статическим преобразователям относятся тиристорные преобразователи, выполняемые на базе автономных инверторов напряжения и тока, а также преобразователи, выполненные на базе силовых транзисторов. При частотном управлении АД возникает необходимость, как отмечено ранее при рассмотрении электромеханических свойств АД, регулировать не только частоту, но и величину подводимого напряжения, причем напряжение регулируется не только в функции частоты, но ещё и в функции нагрузки двигателя. Регулирование напряжения только в функции частоты с учетом характеристик механизма может быть реализовано в разомкнутых системах частотного управления. Регулирование напряжения в функции частоты и нагрузки можно осуществить лишь в замкнутых системах. Верхний предел регулирования частоты, следовательно, скорости АД, ограничивается прочностью крепления обмоток ротора и заметным увеличением потерь в стали статора. Нижний предел ограничен сложностью реализации источника питания с низкой частотой и возможностью неравномерности вращения двигателя. Как правило, напряжение при частотном управлении регулируется лишь вниз по отношению к номинальному, а частота вверх и вниз по отношению к основной. При выборе соотношения между частотой и напряжением, подводимым к статору АД, чаще всего исходят из условия сохранения перегрузочной способности двигателя для любой из его регулировочных механических характеристик. Основной закон частотного регулирования (закон Костенко), известный ещё изкурса электрических машин, в математической форме имеет вид , где МС и М’C -статические моменты сопротивления соответствующие скорости двигателя при частотах f1 и f’1. U1 и U’1 -соответствующие частотам f1 и f’1 напряжения. В относительных единицах этот закон запишется так: , где Из него следует, что закон изменения напряжения определяется не только частотой источника питания, но и характером изменения момента сопротивления механизма на валу двигателя при изменении угловой скорости. Согласно формуле Бланка или в относительных единицах Учитывая, что , а , можно написать Тогда основной закон после подстановки в формулу значения mC, будет иметь вид: При постоянном моменте на валу двигателя МС (следовательно и mС) не зависит от скорости, а значит и частоты. Поэтому х=0 и или , а в именованных единицах Полученный закон – это закон пропорционального управления. Механические характеристики двигателя при этом законе изображены на рисунке. Жесткость характеристик сохраняется сравнительно высокой. Критический момент в зоне частот, близких к основной, практически остается неизменной. Однако при значительном снижении чистоты (ниже 0,5f1H) сопротивление становится соизмеримым по величине с сопротивлением r1 статора или даже меньше его. Влияние падения напряжения на r1 становится весьма заметным, к намагничивающей цепи двигателя подводится тем меньшее напряжение, чем меньше частота. Это вызывает уменьшение критического момента, следовательно, перегрузочной способности двигателя. Плавное регулирование до f1=0 при этом законе невозможно. Невозможно также обеспечить устойчивую работу двигателя при Мс=const в широком диапазоне регулирования частоты. Закон пропорционального регулирования можно легко реализовать при разомкнутой системе, Этот закон целесообразен только для крупных АД, а для мелких, маломощных он малоэффективен, т.к. уже при j1<0,5 перегрузочная способность двигателя заметно снижается (у них большое r1). Потери в двигателе больше, чем при основном законе. При идеальном вентиляторном моменте сопротивления x=2, m0=0 и × или Механические характеристики при этом законе изображены на рис. При постоянной мощности статической нагрузки РС=const или : В этом случае Х=-1 Приняв m0=0, получим закон управления или Механические характеристики при этом законе имеют вид, изображенный на рисунке. Возможны также законы, обеспечивающие постоянство потокосцеплений статора y1=yS=const, ротора y2=yr=const, взаимного потокосцепления статора и ротора ym=const. Возможен закон поддержания относительной частоты тока ротора (j2=const), абсолютной частоты тока ротора (f2=const), закон управления по ЭДС и моменту или
Date: 2015-05-22; view: 1487; Нарушение авторских прав |