Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Тензор скорости деформации





Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Теория деформированного состояния.

 

В общем случае движение твердого недеформируемого тела можно представить суммой поступательного и вращательного движений. Если же тело ещё и деформируется, то движение будет более сложным. Из него можно выделить поступательное и вращательное движения, считая их переносными, а остальное – относительное движение – будет обусловлено только деформацией тела.

 

Тензор скорости деформации.

 

Пусть деформируемое тело в некоторый момент имело объем V и было ограничено поверхностью S . Внутри тела имеет место движение частиц. Это движение представлено векторным полем скорости .

 


 

Рассмотрим точку М деформируемого тела вместе с её окрестностью. Положение точки М в трехмерном пространстве задается радиусом вектором , компоненты (проекции) которого х, у, z.. Бесконечно малая окрестность окружает точку М . Положение произвольной точки М1 в этой окрестности задается дополнительным вектором , с компонентами х , у , z .

Пусть точка М как точка деформируемого тела имеет в данный момент скорость движения с компонентами вдоль осей координат vx , vy, vz . Скорость точки М1 из области, окружающей точку М , будет отличаться от скорости точки М на величину , компоненты которой определяются соотношениями

(2. 1)

Коэффициенты при компонентах вектора в уравнениях (2.1) образуют так называемый тензор абсолютной производной векторного поля

(2.2)

 

Этот тензор может быть представлены в виде суммы

(2.3)

Здесь - тензор вращения с компонентами ( элементами матрицы )

, (2.4)

а - тензор скорости деформации с компонентами ( элементами матрицы )

(2.5)

Таким образом движение окрестности точки М сплошной среды состоит из: чистой деформации, определяемой тензором скорости деформации с компонентами (2.5); вращения области относительно точки М , определяемого тензором вращения с компонентами (2.4) и поступательного движения, определяемого вектором скорости точки М.

Компоненты тензора скорости деформации в развернутой форме имеет вид

(2.6)

(2.7)

и называются: (2.6) – скоростями удлинения в направлении осей соответственно Х,У,Z, а удвоенные (2.7) – скоростями сдвига в плоскостях соответственно ХОУ, УОZ, ZОХ.

Уравнения (2.6) и (2.7) называются геометрическими или кинематическими соотношениями связи скоростей течения и компонентов тензора скорости деформации.

Тензор скорости деформации имеет вид

(2.8)

 








Date: 2015-05-22; view: 362; Нарушение авторских прав



mydocx.ru - 2015-2022 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию