Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Закон сохранения момента импульса

Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси. Значение момента импульса Lz не зависит от положения точки 0 на оси z.
При вращении абсолютно твердого тела вокруг неподвижной оси каждая отдельная точка тела движется по окружности постоянного радиуса ri с некоторой скоростью vi. Скорость vi и импульс mivi перпендикулярны этому радиусу, т.е. радиус является плечом вектора mivi. Поэтому можно записать, что момент импульса отдельной точки относительно оси z равен


Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных его точек:


Учитывая связь между линейной и угловой скоростями (vi = ωri), получим следующее выражение для момента импульса тела относительно неподвижной оси:

(4.12)

т.е. момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.
Продифференцировав выражение (4.12) по времени, получим:

(4.13)

Это еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: скорость изменения момента импульса тела относительно неподвижной оси вращения равна результирующему моменту относительно этой оси всех внешних сил, действующих на тело.
Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:
если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.
Действительно, если M = 0, то dL / dt = 0 , откуда

(4.14)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.
Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси:
если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если Mz = 0, то dLz / dt = 0, откуда

(4.15)

Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.
Справедливость закона сохранения момента импульса относительно неподвижной оси вращения можно продемонстрировать на опыте со скамьей Жуковского. Скамьей Жуковского называется горизонтальная площадка, свободно вращающаяся без трения вокруг неподвижной вертикальной оси ОО1. Человек, стоящий или сидящий на скамье, держит в вытянутых руках гимнастические гантели и приводится во вращение вместе со скамьей вокруг оси ОО1 с угловой скоростью ω1. Приближая гантели к себе, человек уменьшает момент инерции системы, а так как момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость ее вращения ω2возрастает. Тогда по закону сохранения момента импульса относительно оси ОО1 можно записать:

(4.16)

где J0 - момент инерции человека и скамьи; 2mr12 и 2mr22 - моменты инерции гантелей в первом и втором положениях; m – масса одной гантели; r1, r2 – расстояния от гантелей до оси ОО1.
Изменение момента инерции системы связано с изменением ее кинетической энергии:


Используя выражение для ω2, полученное из (4.16)


после преобразований получим:


Это изменение кинетической энергии системы численно равно работе, совершенной человеком при перемещении гантелей.
В табл. 4.2 сопоставлены основные физические величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение.

Таблица 4.2

Пример. Два одинаковых шара насажены на гладкий горизонтальный стержень, но которому они могут скользить (рис. 6.11). Шары сближают и соединяют нитью. Затем всю установку приводят во вращение вокруг вертикальной оси, предоставляют ее самой себе и пережигают нить. Шары, естественно, разлетаются к концам стержня. Угловая же скорость установки при этом резко уменьшается.

Наблюдаемый эффект является прямым следствием закона сохранения момента импульса, ибо данная установка ведет себя, по существу, как замкнутая, так как внешние силы компенсируют друг друга, ибо силы

Рис. 6.11. Демонстрационный опыт с шарами

трения в оси малы. Для количественной оценки изменения угловой скорости будем считать, что масса всей установки практически сосредоточена в шарах, а их размеры пренебрежимо малы. Тогда из равенства моментов импульса шаров относительно точки C в начальном и конечном состояниях системы следует

Отсюда видно, что с увеличением расстояния шаров от оси вращения угловая скорость установки уменьшается обратно пропорционально квадрату этого расстояния. И наоборот, если бы уменьшалось под действием каких-либо внутренних сил, угловая скорость установки увеличивалась бы. Этот эффект имеет общий характер, и его широко используют спортсмены в своих выступлениях, например, фигуристы и гимнасты.



Обратим внимание на тот факт, что конечный результат совершенно не зависит от характера внутренних сил (в нашем примере - это силы трения между шарами и стержнем).

 



<== предыдущая | следующая ==>
Стеноз гортани | Введение. В современных экономических условиях деятельность каждого хозяйствующего субъекта является предметом внимания обширного круга участников рыночных отношений





Date: 2015-05-22; view: 580; Нарушение авторских прав



mydocx.ru - 2015-2022 year. (0.019 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию