Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Эффект Допплера
(34.10) Можно, конечно, объяснить этот эффект и другими способами. Пусть, например, тот же атом испускает не синусоидальную волну, а короткие импульсы (пип, пип, пип, пип) с некоторой частотой ш1. С какой частотой мы будем их воспринимать? Первый импульс к нам придет спустя определенное время, а второй импульс придет уже через более короткое время, потому что атом за это время успел к нам приблизиться. Следовательно, промежуток времени между сигналами «пип» сократился за счет движения атома. Анализируя эту картину с геометрической точки зрения, мы придем к выводу, что частота импульсов увеличивается в 1/(1-v/c) раз.
Будет ли наблюдаться частота w= w0/(1-v/c), если атом с собственной частотой ш0 движется со скоростью v к наблюдателю? Нет. Нам хорошо известно, что собственная частота движущегося атома w1 и частота покоящегося атома w0 — не одно и то же из-за релятивистского замедления хода времени. Так что если w0 — собственная частота покоящегося атома, то частота движущегося атома будет равна Поэтому наблюдаемая частота w окончательно равна Изменение частоты, возникающее в таком случае, называется эффектом Допплера: если излучающий объект движется на нас, излучаемый им свет кажется более синим, а если он движется от нас, свет становится более красным. Приведем еще два других вывода этого интересного и важного результата. Пусть теперь покоящийся источник излучает с частотой w0, а наблюдатель движется со скоростью v к источнику. За время t наблюдатель сдвинется на новое расстояние vt от того места, где он был при t = 0. Сколько радиан фазы пройдет перед наблюдателем? Прежде всего, как и мимо любой фиксированной точки, пройдет ю0t, а также некоторая добавка за счет движения источника, а именно vtk0 (это есть число радиан на метр, умноженное на расстояние). Отсюда число радиан за единицу времени, или наблюдаемая частота, равно w1=w0+k0v. Весь этот вывод был произведен с точки зрения покоящегося наблюдателя; посмотрим, что увидит движущийся наблюдатель. Здесь мы снова должны учесть разницу в течении времени для наблюдателя в покое и движении, а это значит, что мы должны разделить результат на Ö(1-v2/с2). Итак, пусть k0 есть волновое число (количество радиан на метр в направлении движения), а со0 — частота; тогда частота, регистрируемая движущимся наблюдателем, равна (34.13)
(34.14) и, казалось бы, не похоже на (34.12)! Отличается ли частота, наблюдаемая при нашем движении к источнику, от частоты, наблюдаемой при движении источника к нам? Конечно, нет! Теория относительности утверждает, что обе частоты должны быть в точности равны. Если бы мы были достаточно математически подготовлены, то могли бы убедиться, что оба математических выражения в точности равны! В действительности требование равенства обоих выражений часто используется для вывода релятивистского замедления времени, потому что без квадратных корней равенство сразу нарушается.
(34.15)
(34.16)
(34.17)
(34.18) Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений. § 7. Четырехвектор (w, k) Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота w' линейно связана со старой частотой w и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если со сопоставить с t, a k с х/с2, то новое w' сопоставляется с t', a k' — с координатой х'/с2. Иначе говоря, при преобразовании Лоренца w и k изменяются так же, как t и х. Эти величины w и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координаты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве. Пусть задана система координат х, у, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть К, а направление распространения волны не совпадает ни с одной осью координат. Фиг. 34.11. Плоская волна, движущаяся под углом.
Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos (a>t-ks), где k = 2п/X a s (расстояние вдоль направления движения волны) — проекция вектора положения на направление движения. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть г-еk, где ek — единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r-ek), проекции расстояния на направление движения. Следовательно, наша волна описывается формулой cos(wt-kek•r). Оказывается очень удобным ввести вектор k, называемый волновым вектором', величина его равна волновому числу 2p/l, а направление совпадает с направлением распространения волны Благодаря введению этого вектора волна приобретает вид cos(wt-k•r), или cos(wt-kxx-kyy-kzz). Выясним смысл проекций k, например kx. Очевидно, kx есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла a между осью х и направлением движения истинной волны: Следовательно, скорость изменения фазы, обратно пропорциональная Xх, в направлении х оказывается меньше на множитель cos а; но этот же множитель содержит и kx, равный модулю k, умноженному на косинус угла между k и осью х! Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины со, kx, ky, kz преобразуются в теории относительности как четырехвектор, причем со соответствует времени, a kx, ky, kz соответствуют х, у и z и компонентам четырехвектора. Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно составить релятивистское штрихованное произведение. Взяв вектор положения xm (где m, нумерует четыре компоненты — время и три пространственные) и волновой вектор km (где и. снова пробегает четыре значения), образуем штрихованное произведение хm и km, записываемое в виде S'km хm. Это произведение есть инвариант, не зависящий от выбора системы координат. Согласно определению штрихованного произведения, можно записать S'km хm. следующем виде:
(34.21) Поскольку km есть четырехвектор, то, как мы уже знаем, Skmxm есть инвариант по отношению к преобразованиям Лоренца. Под знак косинуса в нашей формуле для плоской волны входит именно это произведение, и оно обязано быть инвариантом относительно преобразований Лоренца. У нас не может появиться формула, у которой под знаком косинуса стоит неинвариантная величина, потому что мы знаем, что значение фазы не зависит от выбора системы координат. Date: 2015-05-19; view: 494; Нарушение авторских прав |