Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Синхpoтpoннoe излyчeнue





В синхротроне электроны движутся по окружности с боль­шими скоростями, близкими к скорости света, и описанное излучение можно увидеть как настоящий свет! Обсудим это явление более подробно.

Электроны в синхротроне движутся по окружности в одно­родном магнитном поле. Давайте установим прежде всего, почему они движутся по окружности. Согласно уравнению (12.10), сила, действующая на частицу в магнитном поле, равна

F = q•vXB (34.6)

и направлена перпендикулярно полю и скорости. Как обычно, сила равна скорости изменения импульса со временем. Если поле направлено вверх от плоскости страницы, импульс и сила


Фиг. 34.4. Движение заряженной частицы в однородном магнитном поле по окружности (или по спи­рали).

располагаются так, как показано на фиг. 34.4. Поскольку сила перпендикулярна скорости, кинетическая энергия, а значит, и абсолютная величина скорости остаются постоянными. Действие магнитного поля сводится только к изменению направления дви­жения. За малый промежуток времени Dt вектор импульса из­менится на величину Dр = F•Dt, направленную перпендику­лярно импульсу, т. е. вектор импульса р повернется на угол Dq = Dр/р =qvB D t/p, так как |F| = qv•|В|. Но за то же время электрон пройдет расстояние Ds = v D t. Две прямые, АВ и CD, очевидно, пересекутся в точке О, для которой ОА = ОС = R, причем Ds = RDq. Комбинируя написанные фор­мулы, мы получаем RDq/Dt=Rw =v=qvBR/p, откуда

 


 


(34.7)

 

(34.8)

Мы можем повторить это рассуждение в любой последующий промежуток времени и придем, таким образом, к заключению, что частица в магнитном поле должна двигаться по окружности, имеющей радиус R, с угловой скоростью w.

Равенство (34.7), выражающее импульс через произведение заряда, радиуса и магнитного поля, представляет собой очень важный закон, находящий весьма широкое применение. Он имеет большое практическое значение, потому что при наблю­дении движения частиц с одинаковыми зарядами в магнитном поле позволяет измерить радиусы кривизны траекторий; зная, кроме того, величину магнитного поля, можно определить, та­ким образом, импульсы частиц. Умножив обе части (34.7) на с и выразив заряд q через заряд электрона, мы получаем фор­мулу для импульса в единицах электронволът (эв):


(34.9)

Здесь В, R и скорость света определены в системе единиц СИ, скорость света в этой системе равна численно 3•108.

Единица измерения магнитного поля в системе СИ назы­вается вебер на метр квадратный. Часто употребляют более старую единицу — гаусс (гс). Один вебер/м2 равен 104 гс. Что­бы дать представление о величине магнитных полей, приведем некоторые цифры. Самое сильное магнитное поле, которое мож­но создать в железе, порядка 1,5•104 гс; при больших полях использовать железо становится невыгодным. В настоящее время электромагниты с обмоткой из сверхпроводящей прово­локи позволяют получать постоянное поле напряженностью свыше 105 гс, т. е. 10 ед. СИ. Напряженность магнитного поля Земли у экватора составляет несколько десятых гаусса.

Обратимся снова к формуле (34.9) и возьмем для примера синхротрон, который разгоняет частицы до миллиарда электрон-вольт, т. е. дает частицы с рс, равным 109 эв (ниже мы определим и энергию частиц). Пусть В = 104 гс, или 1 ед. СИ, т. е. поле достаточно сильное, тогда R оказывается равным 3,3 м. Син­хротрон КАЛТЕХа имеет радиус 3,7 м, поле чуть больше взя­того нами, а энергию 1,5 млрд. эв (или Гэв), т. е. порядок всех величин тот же самый. Теперь становится понятным, почему синхротроны имеют такие размеры.

Выше мы брали импульс частиц; полная же энергия, вклю­чающая энергию покоя, дается формулой W = Ö(р2с2 +m2с4). Энергия покоя электрона mс2 равна 0,511•106 эв, поэтому при импульсе рс — 109 эв можно пренебречь величиной m2с4 и для всех практических целей пользоваться формулой W=рс, справедливой в случае релятивистских скоростей. Фактически нет никакой разницы, когда мы говорим, что энергия электро­на равна 1 Гэв или что импульс электрона, умноженный на с, равен 1 Гэв. Когда W=109 эв, то, как легко показать, скорость частицы равна скорости света с точностью до одной восьмимил­лионной!

Теперь вернемся к излучению, испускаемому такой частицей. Двигаясь по окружности с радиусом 3,3 м и длиной 20 м,части­ца делает один оборот примерно за то же время, за которое свет проходит 20 м. Поэтому длина волны испускаемого излучения, казалось бы, равна 20 м, т. е. лежит в области коротких радио­волн. Но, как мы уже говорили, возникают пики излучения (см. фиг. 34.3) и из-за того, что скорость электрона отличается от скорости света с на одну восьмимиллионную, ширина пиков пренебрежимо мала по сравнению с расстоянием между ними. Ускорение, определяемое второй производной по времени, при­водит к появлению «фактора сокращения» 8•106 в квадрате, потому что масштаб времени уменьшается в 8•106 раз в области пика и входит он дважды. Поэтому эффективная длина волны должна быть в 64•1012 раз меньше 20 м, что соответствует уже области рентгеновских лучей. (На самом деле эффект опреде­ляется значением не в самом пике, а некоторой областью около пика. Это дает вместо квадрата степень 3/2, но все равно при­водит к длинам волн, несколько меньшим, чем в видимом свете.)


Фиг. 34.5, Падающий на решет­ку импульс света в форме острого пика после отражения дает в раз­ных направлениях лучи различной окраски.

 

Итак, если даже медленно движущийся электрон излучает радиоволны длиной порядка 20 м, то релятивистские эффекты сокращают длину волны настолько, что мы можем увидеть из­лучение! Очевидно, свет должен быть поляризован перпенди­кулярно однородному магнитному полю.

Предположим далее, что мы направили подобный пучок света (импульсы излучения возникают через большие промежут­ки времени, так что для простоты возьмем один такой импульс) на дифракционную решетку, состоящую из множества рассеи­вающих линий. Какая картина возникнет после прохождения излучения через решетку? (Казалось бы, мы должны увидеть красные, синие полосы света и т. д., если вообще мы будем ви­деть свет.) А что мы увидим на самом деле?

Импульс излучения попадает прямо на решетку, и все ос­цилляторы на линиях решетки начинают одновременно бешено колебаться туда и обратно. При этом они излучают в разных направлениях, как показано на фиг. 34.5. Но точка Р располо­жена ближе к одному концу решетки, и поэтому излучение попа­дает в нее сначала от А, потом от В и т. д., наконец, последним приходит импульс от самой крайней линии. В итоге совокуп­ность всех отраженных волн принимает такой вид, как показано на фиг. 34.6,а. Это электрическое поле, состоящее из целого ряда импульсов, очень походит на синусоидальную волну, при­чем длина волны есть расстояние между соседними импульса­ми, точь-в-точь как у монохроматической волны, падающей на дифракционную решетку! Таким образом, мы действительно увидим свет окрашенным. Но те же аргументы, казалось бы, позволяют думать, что «импульсы» любой формы создадут видимый свет.


Фиг. 34.6. Суммарное электри­ческое поле от совокупности ост­рых импульсов (а) и импульсов гладкой формы (б).

 


Фиг. 34.7. Крабовидная туманность. Снято без фильтра.

Нет, это не так. Предположим, что пики гораздо более гладкие; давайте снова сложим все рассеянные волны, разделенные небольшими временными интервалами (фиг. 34.6,б). Тогда мы увидим, что поле почти не испытывает колебаний и представляет собой весьма гладкую кривую, потому что каж­дый импульс мало меняется за промежуток времени между при­ходом двух соседних рассеянных волн.

Электромагнитное излучение, испускаемое релятивистской заряженной частицей, которая вращается в магнитном поле, называется синхротронным излучением. Происхождение этого названия очевидно, хотя такое излучение возникает не только в синхротронах и даже не только в условиях Земли. Весьма интересно и увлекательно то, что оно возникает и во Вселенной!

Date: 2015-05-19; view: 373; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию