Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Результирующее поле n одинаковых осцилляторов





Настоящая глава — непосредственное про­должение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворитель­ным образом определить разницу между дифрак­цией и интерференцией. Дело здесь только в привычке, а существенного физического раз­личия между этими явлениями нет. Единствен­ное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обыч­но называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — ин­терференция это или дифракция, а просто про­должим наше обсуждение с того места, где мы остановились в предыдущей главе.


Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных рас­стояниях один от другого и обладающих рав­ными амплитудами, но разными фазами созда­ваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возни­кает разность хода лучей. Независимо от при­чины возникновения разности фаз необходимо вычислить сумму такого вида:

 

где j — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае j=a+2pd1/2sinq. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А, а его фаза равна нулю; длина второго также А, а фаза его равна j. Следующее слагаемое имеет снова длину А и фазу, равную 2j, и т. д. В конце концов получается часть правильного много­угольника с n сторонами (фиг. 30.1).

 


 

Фиг. 30.1. Результирующая ам­плитуда шести аквидистантных источников при разности фаз j между каждыми двумя соседними источниками.

 


Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе j (поскольку радиус QS образует с А2 такой же угол, как QO с a1). Следовательно, радиус r дол­жен удовлетворять равенству А = 2r sinj/2, откуда мы и на­ходим величину r. Далее, большой угол OQT равен nj; следо­вательно, A R =2r sinnj/2. Исключая из обоих равенств г, получаем

 

(30.2)


Таким образом, суммарная интенсивность оказывается равной

 

 

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n =1, получим, как и следовало ожидать, I = I0. Проверим формулу для n=2: с помощью соотношения sinj=2sin j/2cosj/2 сразу находим АR = 2Acos j/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и j, близ­ких к нулю. Прежде всего, когда j точно равно нулю, мы полу­чаем отношение О/О, но фактически для бесконечно малых j отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n 2 раз больше интенсивности одного осциллятора. Этот результат легко по­нять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исход­ного, а интенсивность увеличивается в n2 раз.

С ростом фазы j отношение двух синусов падает и обращается в нуль в первый раз при nj/2 = p, поскольку sinp=0. Дру­гими словами, значение j=2p /n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов воз­вращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2л.

Перейдем к следующему максимуму и покажем, что он дей­ствительно, как мы и ждали, много меньше первого. Для точ­ного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с измене­нием j. Мы не станем этого делать, поскольку при большом n sinj/2 меняется медленнее sinj/2 и условие sinj/2 =1 дает положение максимума с большой точностью. Макси­мум sin2nj/2 достигается при nj/2=Зp/2 или j= Зp/n. Это озна­чает, что стрелки векторов описывают полторы окружности.

Подставляя j=3p/n, получаем sin23p/2=l в числителе (30.3) (с этой целью и был выбран угол j) и sin23n/2n в знамена­теле. Для достаточно большого n можно заменить синус его аргументом: sin Зp/2n =3p/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I0 (4n2/9p2). Но n2I0 — не что иное, как интенсивность в первом максимуме, т. е. интенсив­ность второго максимума получается равной 4/9p2 от максималь­ной, что составляет 0,047, или меньше 5%! Остальные макси­мумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.




Фиг. 30.2. Зависимость интенсивности от фазово­го угла для большого числа осцилляторов с одинаковыми амплитудами.

Фиг. 30.3. Устройство из n одинаковых осцил­ляторов, расположенных на линии. Фаза колебания s-го осциллятора равна as =sa.

 

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2pnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной ли­нии, как показано на фиг. 30.3. Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источ­никами выбран равным а. Тогда для лучей, распространяющихся в заданном направлении Э, отсчитываемом от нормали, вследст­вие разности хода лучей от двух соседних источников возникает


дополнительный сдвиг фазы 2pd(1/l)sinq. Таким образом,

 

(30.4)

Рассмотрим сначала случай a=0. Все осцилляторы колеб­лются с одной фазой; требуется найти интенсивность их излуче­ния как функцию угла В. Подставим с этой целью j=kdsin q в формулу (30.3) и посмотрим, что получится в результате. Пре­жде всего, при j=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направ­лении 0 =0. Интересно узнать, где находится первый минимум.


Он возникает при j=2p/n; другими словами, первый мини­мум кривой интенсивности определяется из соотношения (2pd/l)sinq =2 p /n. Сокращая на 2p, получаем

 

(30.5)

Теперь разберем с физической точки зрения, почему мини­мум возникает именно в этом месте. В этом выражении nd есть полная длина L нашей системы осцилляторов. Обращаясь к фиг. 30.3, мы видим, что ndsinq =L sinq=D. Формула (30.5) подсказывает нам, что минимум возникает при D, равном одной длине волны. Но почему минимум получается при D = l? Дело в том, что поля от отдельных осцилляторов равномерно распределены по фазе от 0 до 360°. Стрелки (см. фиг. 30.1) опи­сывают полную окружность; мы складываем равные векторы, имеющие произвольные направления, а в этом случае сумма равна нулю. Вот при таких значениях угла, когда D=l, воз­никает минимум. Это и есть первый минимум.

Формула (30.3) имеет еще одну важную особенность: при уве­личении угла j на число, кратное 2p, значение интенсивности не меняется. Поэтому для j =2p, 4p, 6p и т. д. также возникают резкие и высокие максимумы. Вблизи этих максимумов интен­сивность повторяет свой ход (см. фиг. 30.2). Зададимся вопро­сом, в силу каких геометрических соотношений возникают дру­гие максимумы? Условие появления максимума записывается в виде j==2pm, где m любое целое число. Отсюда получаем (2pd/l)sinq=2pm. Сокращая на 2p, получаем


dsinq = m l. (30.6)

Это соотношение очень похоже на формулу (30.5). Однако там было nd sin q=l. Разница в том, что здесь нужно взять каж­дый отдельный источник и выяснить, что для него означает условие n dsin q =m l; угол q здесь таков, что разность хода d l. Другими словами, волны, идущие от источников, раз­личаются по фазе на величину, кратную 360°, и, следовательно, все находятся в фазе. Поэтому при сложении волн возникает столь же высокий максимум, как и в рассмотренном ранее слу­чае т =0. Побочные максимумы и весь ход интенсивности здесь такие же, как в случае j =0. Таким образом, наша система посы­лает пучки лучей в разных направлениях, причем каждый пу­чок имеет высокий центральный максимум и ряд слабых боко­вых. Главные (центральные) максимумы в зависимости от вели­чины т называются максимумами нулевого, первого и т. д. порядков; т называют порядком максимума.

Обратите внимание на такой факт: если d меньше l, то фор­мула (30.6) имеет единственное решение при т =0. Поэтому для малого расстояния между источниками возникает один-един­ственный пучок, сконцентрированный около q=0. (Разумеется, есть еще пучок в обратном направлении.) Чтобы получить мак­симумы других порядков, расстояние d должно быть больше одной длины волны.







Date: 2015-05-19; view: 450; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию