Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Электромагнетизм





Решающие и наиболее поразительные периоды развития физики — это периоды великих обобщений, когда явления, казавшиеся разоб­щенными, неожиданно становятся всего лишь разными аспектами одного и того же процесса. История физики — это история таких обобще­ний, и в основе успеха физической науки лежит главным образом наша способность к синтезу.

По-видимому, самым знаменательным момен­том в развитии физики XIX столетия следует считать тот день в 1860 г., когда Дж. К. Максвелл сопоставил законы электричества и магнетизма с законами поведения света. В результате были частично объяснены свойства света — этой ста­рой и тонкой субстанции, настолько загадочной и важной, что в свое время при написании главы о сотворении Мира сочли нужным отнести для него отдельный акт творения. Закончив свое исследование, Максвелл мог бы сказать: «Да будет электричество и магнетизм, и станет свет!»

Этот кульминационный момент долго подго­тавливался постепенным раскрытием законов электричества и магнетизма, о которых мы под­робно расскажем в дальнейшем. Вкратце исто­рия сводится к следующему. По мере того как постепенно открывались все новые свойства электричества и магнетизма, электрических сил притяжения и отталкивания, а также магнит­ных сил, было обнаружено, что, хотя эти силы носят довольно сложный характер, все они спадают обратно пропорционально квад­рату расстояния. Известно, например, что имен­но таким образом меняются кулоновские силы между неподвижными зарядами. Отсюда вытекает, что на достаточно больших расстояниях системы зарядов мало влияют друг на друга. Связав между собой открытые до тех пор законы, Максвелл обнаружил, что они несовместны, и, чтобы сделать всю систему совместной, он добавил к уравнениям еще один член. Появление этого члена привело к замечательно­му предсказанию: часть электрического и магнитного поля спа­дает медленнее, чем обратный квадрат расстояния, а именно обратно пропорционально самому расстоянию! Отсюда Макс­велл вывел, что электрические токи воздействуют на как угодно далекие системы зарядов, и предсказал все основные, хорошо нам теперь знакомые явления — передачу радиоволн, радиоло­кацию и т. д.

Кажется поистине чудом, что с помощью каких-то электри­ческих воздействий человек, говорящий где-нибудь в Европе, может быть услышан за тысячи миль в Лос-Анджелесе. Почему это стало возможным? Потому, что поля спадают обратно про­порционально не квадрату, а первой степени расстояния. Наконец, было показано, что свет тоже представляет собой электрические и магнитные поля, распространяющиеся на большие расстояния, а генерируется он неправдоподобно быст­рым колебанием электронов в атомах. Все эти явления мы будем называть излучением, или, более точно, электромагнитным излучением, потому что бывают и другие типы излучений. Но почти всегда излучение означает электромагнитное излучение.

И тут выступает единство явлений во Вселенной. Движение атомов далекой звезды даже на огромных расстояниях возбуж­дает электроны нашего глаза, и мы узнаем о звездах. Если бы закона воздействия полей не существовало, мы бы буквально ничего не знали о внешнем мире! А электрические бури в га­лактике, удаленной от нас на пять миллиардов световых лет (самой далекой из обнаруженных до сих пор), еще способны возбуждать токи в гигантской «чаше» радиотелескопа. Вот по­чему мы видим и звезды, и галактики.

Об этих замечательных явлениях и пойдет речь в настоящей главе. В самом начале нашего курса лекций мы обрисовали об­щую картину мира, но теперь мы более подготовлены к тому, чтобы понять ее глубже. Поэтому вернемся снова к общей кар­тине явлений и поговорим о ней более подробно. Начнем мы с описания положения, которое физика занимала в конце XIX столетия. Все, что тогда было известно об основных закономер­ностях, можно сформулировать так.

Во-первых, была известна сила тяготения (мы ее записыва­ли неоднократно). Сила, действующая на тело с массой m со стороны тела массы М, дается выражением

(28.1)

где er — единичный вектор, направленный от m к М, а r — рас­стояние между телами.

Во-вторых, к концу XIX века был известен такой закон электричества и магнетизма: сила, действующая на заряд q, характеризуется двумя полями Е и В и скоростью заряда v:

F=q(E+vXB). (28.2)

К этому нужно добавить формулы для Е и В. Для совокупности заряженных частиц поля Е и В представляются как суммы вкладов от каждой частицы в отдельности. Таким образом, опре­делив Е и В для одного заряда и сложив вклады от всех зарядов во Вселенной, мы получим полную величину Е и В! В этом и со­стоит принцип суперпозиции.


Как теперь получить формулу для электрического и магнит­ного поля одного заряда? Оказывается, это очень сложно; пона­добится затратить много труда и использовать тонкие доказа­тельства. Но не в этом дело. Мы написали законы, собственно, чтобы подчеркнуть красоту природы, показать, что все основные законы можно уместить на одной странице (с обозначениями чи­татель уже знаком). Точная и вполне строгая формула для поля, создаваемого отдельным зарядом, насколько мы знаем, имеет очень сложный вид (мы отвлекаемся от эффектов кванто­вой механики). Поэтому мы не будем выводить ее подробно, а запишем сразу, как она выглядит. На самом деле правильнее было бы записать законы электричества и магнетизма с помо­щью уравнений поля, о которых будет сказано позднее. Но там используются совсем иные понятия и обозначения, поэтому давайте сейчас напишем выражения для поля в уже знакомой нам форме, хотя она и не очень удобна для вычислений.

Электрическое поле Е дается выражением

(28.3)

Что означают отдельные члены в этом выражении? Возьмем первый из них,

Е=-qer/4pe0r'2. Это уже знакомый нам закон Кулона; здесь q — заряд, создающий поле, er' - единичный вектор, направленный от точки Р, где измеряется поле Е, r — расстояние от Р до q. Но закон Кулона неточен. Открытия, сделанные в XIX веке, показали, что любое воздействие не мо­жет распространяться быстрее некоторой фундаментальной скорости с, называемой теперь скоростью света. Поэтому опре­делить положение заряда в настоящий момент времени не­возможно. Кроме того, на поле в данный момент времени может влиять только поведение заряда в прошлом. А как давно в прош­лом? Задержка во времени, или так называемое время запаздыва­ния, есть время, необходимое для прохождения расстояния от заряда до точки измерения поля Р со скоростью света с. Время запаздывания равно r'/с. Таким образом, первый член в (28.3) представляет собой не обычный, а запаздывающий закон Кулона.

Чтобы учесть запаздывание, мы поставили штрих у r, по­нимая под r' то расстояние, на которое в начальный момент сво­его воздействия был удален заряд q от точки Р. Представим на минуту, что заряд несет с собой световые сигналы, которые дви­жутся к точке Р со скоростью c. Тогда, глядя на заряд q, мы увидели бы его не в том месте, где он находится сейчас, а там, где он был некоторое время назад. В нашу формулу входит кажущееся направление er', так называемое запаздывающее направление, и запаздывающее расстояние r'. Это легко понять, но это еще не все. Дело, оказывается, еще гораздо сложнее.

В выражении (28.3) имеется и ряд других членов. Вторым членом природа как бы учитывает запаздывание в первом гру­бом приближении. Это поправка к запаздывающему кулоновскому члену; она представляет собой произведение скорости из­менения кулоновского поля и времени запаздывания. Но и это не все. Есть еще третий член — вторая производная по t единич­ного вектора, направленного к заряду. Этим исчерпывается фор­мула; мы учли все вклады в электрическое поле от произвольно движущегося заряда.

Магнитное поле выражается следующим образом:

(28.4)

Все предыдущее мы написали, чтобы показать красоту природы и, в некотором смысле, могущество математики. Говоря от­кровенно, мы даже не пытаемся понять, почему столь значитель­ные по содержанию формулы занимают так мало места, ведь в них содержится и принцип действия генераторов тока, и особенности поведения света — словом, все явления электричества и магнетизма. Конечно, для полноты картины нужно добавить еще кое-что о свойствах использованных материалов (свойствах вещества), которые пока не учтены в (28.3).


Заканчивая краткое описание представлений о мире в XIX веке, следует упомянуть еще об одном фундаментальном обоб­щении, к которому в большой степени причастен и Максвелл, а именно о единстве явлений механики и теплоты. Мы будем гово­рить об этом в ближайшем будущем.

В XX столетии обнаружили, что все законы динамики Нью­тона неправильны, и чтобы уточнить их, воспользовались кван­товой механикой. (Законы Ньютона справедливы для тел дос­таточно больших размеров.) Совсем недавно законы квантовой механики в совокупности с законами электромагнетизма по­служили основой для открытия законов квантовой электродина­мики. Кроме того, был открыт ряд новых явлений, и раньше других — явление радиоактивности, открытое Беккерелем в 1898 г. (он похитил его из-под самого носа у XX столетия). Явление радиоактивности послужило началом развития науки о ядрах, новых частицах и о взаимодействиях совсем другого ро­да — не гравитационных и не электрических. Все эти вопросы еще ждут своего разрешения.

Для уж очень строгих и образованных читателей (скажем, профессоров, которым случится читать эти строки) специально добавим: наше утверждение, что выражение (28.3) содержит все известное из электродинамики, не совсем точно. Существует во­прос, который так и не был разрешен к концу XIX столетия. Если попробовать вычислить поле, создаваемое всеми зарядами, включая и тот заряд, на который в свою очередь действует поле, то возникнут трудности при попытке определить, например, расстояние от заряда до него самого и последующей подстановке этой величины, равной нулю, в знаменатель. Как быть с той частью поля, которая создается зарядом и на него же действует, до сих пор не понятно. Оставим этот вопрос, загадка не раз­гадана до конца, и мы по возможности будем избегать го­ворить о ней.







Date: 2015-05-19; view: 386; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию