Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Энергетические уровни молекул
Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, вращение молекулы. Энергия изолированной молекулы (1) где Е эл — энергия движения электронов относительно ядер, Е кол — энергия колебаний ядер (в результате которых периодически изменяется относительное положение ядер), Е вращ — энергия вращения ядер (в результате которых периодически изменяется ориентация молекулы в пространстве). Отношения Е эл: Е кол: Е вращ = 1: : т/М, где т — масса электрона, М — величина, имеющая порядок массы ядер атомов в молекуле, т/М»10–5¸10–3. Поэтому Е эл >> Е кол >> Е вращ. Доказано, что Е эл»1¸10 эВ, Е кол»10–2¸10–1 эВ, Е вращ»10–5¸10–3 эВ. Каждая из входящих в выражение (1) энергий квантуется (ей соответствует набор дискретных уровней энергии) и определяется квантовыми числами. При переходе из одного энергетического состояния в другое поглощается или испускается энергия D E = hn. При таких переходах одновременно изменяются энергия движения электронов, энергии колебаний н вращения. Расстояние между вращательными уровнями энергии D E вращ гораздо меньше расстояния между колебательными уровнями D E кол которое, в свою очередь, меньше расстояния между электронными уровнями D E эл. На рис. 1 схематически представлены уровни энергии двухатомной молекулы (для примера рассмотрены только два электронных уровня — показаны жирными линиями).
Спектры атомов и молекул. Комбинационное рассеяние света Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах — спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами. При разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, могут соответствовать переходам с одного электронного уровня на другой (электронные спектры) или с одного колебательного (вращательного) уровня на другой (колебательные (вращательные) спектры). Кроме того, возможны и переходы с одними значениями D E кол и D E вращ на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры. Поэтому спектр молекул довольно сложный. Типичные молекулярные спектры — полосатые, представляющие собой совокупность более или менее узких полос в ультрафиолетовой, видимой и инфракрасной областях. Применяя спектральные приборы высокой разрешающей способности, можно видеть, что полосы представляют собой настолько тесно расположенные линии, что они с трудом разрешаются. Структура молекулярных спектров различна для разных молекул и с увеличением числа атомов в молекуле усложняется (наблюдаются лишь сплошные широкие полосы). Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов. комбинационное рассеяние света. Если на вещество (газ, жидкость, прозрачный кристалл) падает строго монохроматический свет, то в спектре рассеянного света помимо несмещенной спектральной линии обнаруживаются новые линии, частоты которых представляют собой суммы или разности частоты n падающего света и частот ni собственных колебаний (или вращений) молекул рассеивающей среды. Линии в спектре комбинационного рассеяния с частотами n – ni, меньшими частоты n падающего света, называются стоксовыми (или красными) спутниками, линии с частотами n + ni, большими n, — антистоксовыми (или фиолетовыми) спутниками. Анализ спектров комбинационного рассеяния приводит к следующим выводам: 1) линии спутников располагаются симметрично по обе стороны от несмещенной линии; 2) частоты ni не зависят от частоты падающего на вещество света, а определяются только рассеивающим веществом, т. е. характеризуют его состав и структуру; 3) число спутников определяется рассеивающим веществом; 4) интенсивность антистоксовых спутников меньше интенсивности стоксовых и с повышением температуры рассеивающего вещества увеличивается, в то время как интенсивность стоксовых спутников практически от температуры не зависит. Поглощение. Спонтанное и вынужденное излучения Если атом находится в основном состоянии, то под действием внешнего излучения может осуществиться вынужденный переход в возбужденное состояние (рис. 1 а), приводящий к поглощению излучения. Вероятность подобных переходов пропорциональна плотности излучения, вызывающего эти переходы. Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромагнитного излучения (испуская фотон с энергией hn=E 2 –Е 1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воздействий называется спонтанным (или самопроизвольным) излучением (рис. 1, б). Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно. Если на атом, находящийся в возбужденном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей условию hv=E 2 –E 1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv=E 2 –E 1 (рис. 1, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.
Принцип работы оптического квантового генератора. Практически инверсное состояние среды осуществлено в принципиально новых источниках излучения — оптических квантовых генераторах, или лазерах. Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок). Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу. Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические,электрические, химические и др.). Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированнойдобротности. Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами[12]. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.
ГАЗОРАЗРЯДНЫЕ ЛАЗЕРЫ - наиболее распространённый класс газовых лазеров, в к-рых для формирования активной среды используются электрич. разряды в газах. При переходе к давлениям газа порядка атмосферного и выше (необходимого для повышения мощности Г. л.) появляющиеся неустойчивости разряда делают активную среду неоднородной и непригодной для возбуждения генерации. Для повышения устойчивости разряда используют предионизацию разрядного объёма пучком заряж. частиц, вспомогат. разрядом, коротковолновым (оптич. или рентг.) излучением. В Г. л. высокого давления часто применяют поперечный разряд обычно с предионизацией (ТЕА-лазеры, от англ. transverse excitation atmospheric). Газоразрядные лазеры на атомных переходах Возбуждение электронным ударом позволяет получать непрерывную и импульсную генерацию на большом числе квантовых переходов разл. атомов в видимой части спектра (в основном атомов инертных газов) и гл. обр. в ИК-области. Прямым электронным ударом наиб. эффективно возбуждаются уровни, связанные с осн. состоянием атома разрешёнными переходами. Непрерывная инверсия населённости рабочих уровней в трёхуровневой системе в большинстве случаев образуется за счёт опустошения (распада) нижнего рабочего уровня спонтанным излучением (см. Лазер).Мощность и кпд Г. л. этого типа невелики, но они просты в изготовлении и эксплуатации. Для их возбуждения используют тлеющий разряд или высокочастотный разряд. На ряде линий достигается высокий коэф. усиления (напр., ~1 см-1 на =3,51 мкм). Пример - Г. л. на переходах атома Xe. Рис. 1. Схема уровней атома Cu, участвующих в генерации. В импульсном режиме наиб. практич. интерес представляет генерация на т. н. самоограниченных переходах, ниж. уровни к-рых метастабильны. Длительность существования инверсии населённости на таких переходах ограничена накоплением частиц на ниж. уровне; она не больше времени жизни частиц на верхнем рабочем уровне (рис. 1; обозначения уровней см. в ст. Атомные спектры ). Наиб. мощность и эффективность генерации достигнута на переходах с первого резонансного уровня, т. к. он наиб. эффективно заселяется электронами. На самоограниченных переходах ряда атомов (Cu, Ba, Mn, Pb, Au, Eu и др.) получена генерация со ср. мощностью >1 Вт при относительно высоком кпд 0,1-1%. Эти Г. л. обычно работают с высокой частотой повторения импульсов (5-20 кГц) и обладают высоким усилением. Наилучшие характеристики имеют Г.л. на парах Cu ( =510,6; 578,2 нм), ср. мощность генерации к-рых приближается к 100 Вт при кпд ~1%.
Date: 2015-05-19; view: 3172; Нарушение авторских прав |