![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Порода: 1 — коллекторы, 2 — неколлекторы; а—в — индексы пластовПри значительном количестве скважин построение геолого-статистических разрезов — весьма трудоемкая работа и поэтому выполнять ее целесообразно с помощью ЭВМ. Рассмотрим примеры использования геолого-статистических разрезов при детальной корреляции. При детальной корреляции валено установить, с чем связано начальное изменение общей мощности продуктивного горизонта. Достаточно уверенно решить эту задачу можно с помощью ГСР. Для этого разрезы скважин делят на несколько групп, различающихся общей толщиной продуктивного горизонта.
Рис. 36. Групповые геолого-статистические разрезы продуктивных отложений яснополянского надгоризонта Арланского месторождения. Групповые разрезы по скважинам с толщиной продуктивных отложений, м: а - 42-49, б - 38-41,9,, - 31-37,9; „ - сводный геолого-статистический разрез
группы скважин с толщиной продуктивного горизонта 42 — 49 м (24 скважины), 38-41,9 м (39 скважин) и 31-37,9 м (37 скважин). В качестве линии привязки принята кровля продуктивных отложений. Отчетливо видно, что в верхней части продуктивного горизонта кривые ГСР имеют одинаковую конфигурацию и изменения толщины здесь не отмечается. В нижней части конфигурации кривых существенно различаются, причем можно видеть, что увеличение общей толщины происходит в результате увеличения толщины нижнего песчаного пласта (залегающего на размытой поверхности подстилающих турнейских отложений). Другой важный вопрос, который позволяют решать ГСР, — это выяснение степени выдержанности по площади проницаемых прослоев и разделов между ними. При детальной корреляции не всегда бывает ясно, прослеживаются отдельные прослои по всей площади или представляют собой ограниченные по размерам и не связанные друг с другом линзы. С точки зрения разработки объекта продуктивный горизонт или отдельные его интервалы могут соответствовать одной из следующих основных моделей. Модель 1 — монолитный пласт-коллектор с линзовидными прослоями непроницаемых пород. Каждый непроницаемый прослой имеет ограниченную площадь распространения и поэтому не может коррелироваться между разрезами соседних скважин. Эти прослои не могут служить гидродинамическими экранами, и поэтому пластовое давление при его изменении в любой части продуктивного разреза хорошо перераспределяется как по вертикали, так и по горизонтали. Модель 2 — переслаивание выдержанных по площади проницаемых прослоев и в такой же степени выдержанных по площади непроницаемых разделов между ними. Такие непроницаемые прослои могут служить гидродинамическими экранами, и при изменении пластового давления в одном проницаемом прослое его перераспределение между другими прослоями сильно затруднено либо совсем не происходит. Хорошо перераспределяется пластовое давление лишь по простиранию данного прослоя. Модель 3 — продуктивный горизонт, сложенный преимущественно непроницаемыми породами с линзообразно залегающими разобщенными проницаемыми прослоями. Проницаемые прослои имеют прерывистый характер и между соседними скважинами не прослеживаются. При такой модели разработка может происходить без перераспределения пластового давления между отдельными линзовидными проницаемыми прослоями и частями разреза. Специальными исследованиями установлено, что к моделям 1 относятся интервалы ГСР с долей скважин, вскрывших коллектор, более 70 %. В пределах этих интервалов непроницаемые прослои, выделенные в разрезах соседних скважин, не коррелируются и изображаются в виде изолированных линз. Интервалы ГСР с долей скважин, вскрывших коллектор, 30 — 70 % относятся к модели 2, и в их пределах все проницаемые и непроницаемые прослои, вскрытые соседними скважинами, должны коррелироваться между собой. Если доля скважин, вскрывших в рассматриваемом интервале коллектор, менее 30 %, то этот интервал ГСР относится к модели 3. В его пределах проницаемые прослои соседних скважин не коррелируются между собой, так как представляют собой несвязанные изолированные линзы. В реальных продуктивных горизонтах и эксплуатационных объектах иногда весь разрез соответствует одной схеме модели. Например, на Мухановском месторождении I объект разработки (пласт C-I) целиком соответствует модели 1 (рис. 37), и при его разработке вытеснение нефти водой происходит за счет подъема ВНК практически по всей площади залежи. До последнего времени детальная корреляция продуктивных разрезов скважин в основном проводилась "вручную". К сожалению, промысловым геологам не всегда удавалась с ее помощью проводить достаточно надежную корреляцию при большой макронеоднородности продуктивных горизонтов. В таких случаях нередко утерждалось, что изучаемый горизонт детальной корреляции не поддается. Соответственно фактически не обеспечивалась возможность составления адекватной модели залежи, что приводило к ошибкам выбора системы разработки и организации управления процессами разработки. Наряду с этим даже при владении методикой детальной корреляции физически не удавалось выполнить ее "вручную" по крупным месторождениям, где пробурены тысячи и десятки тысяч скважин. Поэтому в последние годы некоторыми специалистами — В.Ф. Гришкевичем, И.С. Гутманом, В.А. Бадьяновым, Т.А. Боха-новым и другими велись исследования по созданию автоматизированных методов расчленения и детальной корреляции продуктивных разрезов скважин с помощью ЭВМ.
Объекты разработки Мухановского месторождения: а — I (пласт С-1), б - II (пласты С-П, С-Ш, C-IVa, C-IV6); интервалы разреза, в которых доля скважин, вскрывших коллектор, составляет, %: 1 - до 30, 2 - 30-70, 3 - более 70
Наиболее детальную корреляцию с выделением и прослеживанием прослоев небольшой толщины обеспечивает программа, разработанная в РГУ нефти и газа им. И.М. Губкина под руководством И.С. Гутмана с участием сотрудников МГУ и Института прикладной математики. Предложенная программа реализует подход, при котором процесс детальной корреляции полностью автоматизирован. Это обеспечивает большую надежность выполняемых процедур при огромном быстродействии программы — массив из 3500 скважин с толщиной разреза до 200 м может быть детально откоррелирован в зависимости от класса машин за 10-12 часов.
Рис. 38. Графики зависимости коэффициента сверхсжимаемости Z углеводородного газа от приведенных псевдокритических давления рпр и температуры Тпр (по Г. Брауну). Шифр кривых — значения Тпр
Программа ориентирована на использование IBM Pentium II, обеспечивающей связь сдругими программами (построение профилей, карт и т.п.). Она предусматривает одновременную обработку по скважине комплекта из шести и более геофизических диаграмм, оценку дифференцированности формы каждой из кривых и выбор наиболее представленных кривых. Алгоритм программы основан на опыте выполнения детальной корреляции вручную. Программа предусматривает проведение детальной корреляции в два этапа. На первом этапе строится корреляция всех пар скважин по всему коррелируемому разрезу. При этом обеспечиваются применение при выборе корреляционных пар скважин принципа триангуляционных сетей и постоянная проверка получаемых результатов с включением в процесс уже откоррелированных скважин. При неправильном соединении интервалов разрезов программа вносит коррективы. На втором этапе, после выполнения всех парных корреляций, программа обеспечивает процесс проверки их согласованности и строит схему детальной корреляции (рис. 38). Схема может быть построена по любому количеству скважин по всему разрезу или только с выделением пластов-коллекторов (на основе индексации этих пластов в одной из скважин). Все это выполняется в автоматическом режиме.
Глава VI СВОЙСТВА ПЛАСТОВЫХ ФЛЮИДОВ
|