Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Порода: 1 — коллекторы, 2 — неколлекторы; а—в — индексы пластов
При значительном количестве скважин построение геолого-статистических разрезов — весьма трудоемкая работа и поэтому выполнять ее целесообразно с помощью ЭВМ. Рассмотрим примеры использования геолого-статистических разрезов при детальной корреляции. При детальной корреляции валено установить, с чем связано начальное изменение общей мощности продуктивного горизонта. Достаточно уверенно решить эту задачу можно с помощью ГСР. Для этого разрезы скважин делят на несколько групп, различающихся общей толщиной продуктивного горизонта. Для каждой выделенной группы строят ГСР, которые сравнивают между собой. На групповых ГСР с повышенной толщиной обычно можно четко видеть, за счет какой части разреза происходит увеличение общей мощности продуктивного горизонта. На рис. 36 показаны групповые ГСР продуктивных отложений яснополянского надгоризонта одной из площадей Арланского месторождения. Здесь выделены три
Рис. 36. Групповые геолого-статистические разрезы продуктивных отложений яснополянского надгоризонта Арланского месторождения. Групповые разрезы по скважинам с толщиной продуктивных отложений, м: а - 42-49, б - 38-41,9,, - 31-37,9; „ - сводный геолого-статистический разрез
группы скважин с толщиной продуктивного горизонта 42 — 49 м (24 скважины), 38-41,9 м (39 скважин) и 31-37,9 м (37 скважин). В качестве линии привязки принята кровля продуктивных отложений. Отчетливо видно, что в верхней части продуктивного горизонта кривые ГСР имеют одинаковую конфигурацию и изменения толщины здесь не отмечается. В нижней части конфигурации кривых существенно различаются, причем можно видеть, что увеличение общей толщины происходит в результате увеличения толщины нижнего песчаного пласта (залегающего на размытой поверхности подстилающих турнейских отложений). Другой важный вопрос, который позволяют решать ГСР, — это выяснение степени выдержанности по площади проницаемых прослоев и разделов между ними. При детальной корреляции не всегда бывает ясно, прослеживаются отдельные прослои по всей площади или представляют собой ограниченные по размерам и не связанные друг с другом линзы. С точки зрения разработки объекта продуктивный горизонт или отдельные его интервалы могут соответствовать одной из следующих основных моделей. Модель 1 — монолитный пласт-коллектор с линзовидными прослоями непроницаемых пород. Каждый непроницаемый прослой имеет ограниченную площадь распространения и поэтому не может коррелироваться между разрезами соседних скважин. Эти прослои не могут служить гидродинамическими экранами, и поэтому пластовое давление при его изменении в любой части продуктивного разреза хорошо перераспределяется как по вертикали, так и по горизонтали. Модель 2 — переслаивание выдержанных по площади проницаемых прослоев и в такой же степени выдержанных по площади непроницаемых разделов между ними. Такие непроницаемые прослои могут служить гидродинамическими экранами, и при изменении пластового давления в одном проницаемом прослое его перераспределение между другими прослоями сильно затруднено либо совсем не происходит. Хорошо перераспределяется пластовое давление лишь по простиранию данного прослоя. Модель 3 — продуктивный горизонт, сложенный преимущественно непроницаемыми породами с линзообразно залегающими разобщенными проницаемыми прослоями. Проницаемые прослои имеют прерывистый характер и между соседними скважинами не прослеживаются. При такой модели разработка может происходить без перераспределения пластового давления между отдельными линзовидными проницаемыми прослоями и частями разреза. Специальными исследованиями установлено, что к моделям 1 относятся интервалы ГСР с долей скважин, вскрывших коллектор, более 70 %. В пределах этих интервалов непроницаемые прослои, выделенные в разрезах соседних скважин, не коррелируются и изображаются в виде изолированных линз. Интервалы ГСР с долей скважин, вскрывших коллектор, 30 — 70 % относятся к модели 2, и в их пределах все проницаемые и непроницаемые прослои, вскрытые соседними скважинами, должны коррелироваться между собой. Если доля скважин, вскрывших в рассматриваемом интервале коллектор, менее 30 %, то этот интервал ГСР относится к модели 3. В его пределах проницаемые прослои соседних скважин не коррелируются между собой, так как представляют собой несвязанные изолированные линзы. В реальных продуктивных горизонтах и эксплуатационных объектах иногда весь разрез соответствует одной схеме модели. Например, на Мухановском месторождении I объект разработки (пласт C-I) целиком соответствует модели 1 (рис. 37), и при его разработке вытеснение нефти водой происходит за счет подъема ВНК практически по всей площади залежи. До последнего времени детальная корреляция продуктивных разрезов скважин в основном проводилась "вручную". К сожалению, промысловым геологам не всегда удавалась с ее помощью проводить достаточно надежную корреляцию при большой макронеоднородности продуктивных горизонтов. В таких случаях нередко утерждалось, что изучаемый горизонт детальной корреляции не поддается. Соответственно фактически не обеспечивалась возможность составления адекватной модели залежи, что приводило к ошибкам выбора системы разработки и организации управления процессами разработки. Наряду с этим даже при владении методикой детальной корреляции физически не удавалось выполнить ее "вручную" по крупным месторождениям, где пробурены тысячи и десятки тысяч скважин. Поэтому в последние годы некоторыми специалистами — В.Ф. Гришкевичем, И.С. Гутманом, В.А. Бадьяновым, Т.А. Боха-новым и другими велись исследования по созданию автоматизированных методов расчленения и детальной корреляции продуктивных разрезов скважин с помощью ЭВМ. Рис. 37. Геолого-статистические разрезы. Объекты разработки Мухановского месторождения: а — I (пласт С-1), б - II (пласты С-П, С-Ш, C-IVa, C-IV6); интервалы разреза, в которых доля скважин, вскрывших коллектор, составляет, %: 1 - до 30, 2 - 30-70, 3 - более 70
Наиболее детальную корреляцию с выделением и прослеживанием прослоев небольшой толщины обеспечивает программа, разработанная в РГУ нефти и газа им. И.М. Губкина под руководством И.С. Гутмана с участием сотрудников МГУ и Института прикладной математики. Предложенная программа реализует подход, при котором процесс детальной корреляции полностью автоматизирован. Это обеспечивает большую надежность выполняемых процедур при огромном быстродействии программы — массив из 3500 скважин с толщиной разреза до 200 м может быть детально откоррелирован в зависимости от класса машин за 10-12 часов.
Рис. 38. Графики зависимости коэффициента сверхсжимаемости Z углеводородного газа от приведенных псевдокритических давления рпр и температуры Тпр (по Г. Брауну). Шифр кривых — значения Тпр
Программа ориентирована на использование IBM Pentium II, обеспечивающей связь сдругими программами (построение профилей, карт и т.п.). Она предусматривает одновременную обработку по скважине комплекта из шести и более геофизических диаграмм, оценку дифференцированности формы каждой из кривых и выбор наиболее представленных кривых. Алгоритм программы основан на опыте выполнения детальной корреляции вручную. Программа предусматривает проведение детальной корреляции в два этапа. На первом этапе строится корреляция всех пар скважин по всему коррелируемому разрезу. При этом обеспечиваются применение при выборе корреляционных пар скважин принципа триангуляционных сетей и постоянная проверка получаемых результатов с включением в процесс уже откоррелированных скважин. При неправильном соединении интервалов разрезов программа вносит коррективы. На втором этапе, после выполнения всех парных корреляций, программа обеспечивает процесс проверки их согласованности и строит схему детальной корреляции (рис. 38). Схема может быть построена по любому количеству скважин по всему разрезу или только с выделением пластов-коллекторов (на основе индексации этих пластов в одной из скважин). Все это выполняется в автоматическом режиме.
Глава VI СВОЙСТВА ПЛАСТОВЫХ ФЛЮИДОВ Date: 2015-04-23; view: 1208; Нарушение авторских прав |