Тема 4. Потенциальное силовое поле. Работа потенциальной силы
I: 121.
S: Тяжёлая материальная точка может перемещаться в вертикальной плоскости из положения А в положение В по дуге окружности 1 или отрезку наклонной прямой 2. Будет ли одинакова работа силы тяжести при этих перемещениях?
Отметьте правильный ответ.
+: Одинакова
-: Неодинакова
I: 122.
S: Материальная точка массой m = 0,5 кг брошена с поверхности Земли с начальной скоростью v 0 = 20 м/с и в положении М имеет скорость v = 12 м/с. Определить работу силы тяжести (Дж) при перемещении точки из положения М 0 в положение М.
Отметьте правильный ответ.
+: – 64; -: 0; -: 64; -: 128; -: – 128
I: 123.
S: Груз М весом Р = 20 Н, прикреплённый к невесомой нити длиной l = ОМ = 40 см, начинает двигаться из состояния покоя. Определить: 1) работу силы тяжести А (Р) на перемещении М1М2; 2) скорость v груза М, когда он займёт положение М2. Принять g = 10 м/с2.
1) = … (Дж), 2) = … (м/с).
+: 4*2
I: 124.
S: Тело А находится на гладкой горизонтальной плоскости. К телу прикреплена пружина жёсткости с = 100 Н/см, второй конец которой прикреплён к шарниру О1. Длина недеформированной пружины равна l 0 = 20 см (см. рис.). В положении равновесия тела длина пружины равна l = О1О = 24 см. Определить модуль работы |AOM| упругой силы пружины на перемещении груза тела на расстояние x = 10 см;
|AOM| = … (Дж),
+: 10
I: 125.
S: Стержень длиной l = 2 м и весом Р = 30 Н начинает двигаться из состояния покоя ОА1 без начальной скорости. Определить: 1) работу силы тяжести А (Р) при его перемещении из положения ОА1в положение ОА2; 2) угловую скорость ω стержня в момент, когда он займёт положение ОА2. Результат вычисления округлить до ближайшего целого числа. Принять g = 10 м/с2.
1) = … (Дж), 2) ω | = … (рад/с).
+: 15*3
I: 126.
S: Груз В весом Р = 200 Н без начальной скорости помещают на неподвижную плиту, прикреплённую к вертикальной пружине, и плавно опускают. Определить коэффициент жёсткости пружины с, если наибольшее сжатие пружины под весом плиты λ max = 10 см.
c = … (Н/см).
+: 20
I: 127.
S: Однородный диск массы m скатывается вниз по наклонной плоскости без скольжения без начальной скорости из положения, когда пружина не деформирована. Коэффициент жёсткости пружины равен с.
Определить: 1) кинетическую энергию диска Т в произвольный момент времени, выразив её через скорость центра масс диска v с; 2) работу силы трения А (F тр) на перемещении, когда центр диска пройдёт путь s с = s; 3) работу силы тяжести А (Р) диска на этом же перемещении. 1) Т = …ּ mּv с2; 2) А (F тр) = …ּ mּgּcos 30oּ s cּ/ R; 3) А (Р) = … ּ mּgּs c (вместо многоточия подставить соответствующие множители в виде десятичной дроби).
+: 0,75*0*0,5
I: 128.
S: Груз М весом Р подвешен на невесомой нерастяжимой нити длиной l. В начальный момент времени груз находился в положении М1.
Определить: 1) работу силы тяжести А (Р) на перемещении груза М1М2; 2) какую минимальную скорость v 1 необходимо сообщить грузу, чтобы он достиг положения М2. (Начальный угол наклона стержня 30о)
1) А (Р) = … ּ Рּl; 2) v 1 = …ּ (вместо многоточия подставить соответствующие множители в виде десятичной дроби).
+: – 0,5*1
I: 129.
S: Точечный груз М массы m 1 прикреплён к стержню ОМ длиной l и массы m 2 = 0,6ּ m 1.Стержень ОМ вращается вокруг точки О.
Определить: 1) кинетическую энергию Т системы в момент времени, когда угловая скорость стержня равна ω; 2) работу силы тяжести А стержня при его перемещении из положения ОВ в положение ОD (угол BOD равен 30о).
1) Т = …ּ m 1ּ l 2ּ ω 2 ; 2) А = …ּ m 1ּ gּl
(вместо многоточия подставить соответствующие множители в виде десятичной дроби, включая второй знак после запятой).
+: 0,60*0,65
I: 130.
S: Груз М весом Р = 200 Н прикрепили к середине неизогнутой балки жёсткости с = 100 Н/см и отпустили резко без начальной скорости. Определить наибольший прогиб λmax середины балки; λmax = … (см).
+: 4
I: 131.
S: Груз М весом Р = 300 Н прикрепили к концу недеформированной пружины жёсткости с = 20 Н/см и опустили резко без начальной скорости. Определить: 1) работу силы тяжести А (Р) на перемещении груза S = 10 см вниз по наклонной плоскости (под углом 30о к горизонтали): 2) работу упругой силы пружины А (F упр) на этом же перемещении груза;
3) максимальное сжатие пружины | λmax |.
1) А (Р) = … (Дж); 2) А (F упр) = … (Дж); 3) | λmax | = … (см).
+: 15*– 10*15
I: 132.
S: К невесомому стержню ОА длиной l = 2 ּr прикрепили однородный диск веса Q и радиуса r. Вычислить: 1) кинетическую энергию диска Т в момент времени, когда угловая скорость стержня равна ω; 2) работу силы тяжести А (Q) диска при перемещении стержня из положения ОА в положение ОА1.
1) Т = … ּ mּr 2ּ ω 2 ; 2) А = … ּ Qּr (вместо многоточия подставить соответствующие множители в виде десятичной дроби).
+: 4,75*3
I: 133.
S: К пружине жёсткости с = 40 Н/см прикреплён груз А. Определить работу упругой силы пружины А (F упр) при перемещении груза А из положения В в положение D, если в положении В пружина была растянута на λ В = 3 см, а в положении сжата на |λD| = 2 см; А BD = …(Дж).
+: 1
I: 134.
S: Шарик, размерами которого пренебрегаем, скатывается из точки В по круглому гладкому жёлобу радиуса r без начальной скорости. Определить скорость шарика v D в точке D;
v D = …ּ (вместо многоточия подставить соответствующий множитель в виде десятичной дроби).
+: 1
I: 135.
S: Определить работу А упругой силы пружины жёсткости с = 40 Н/см при перемещении груза из положения В в положение D, если в положении В пружина была сжата на |λВ| = 1см, а в положении D растянута на λD = 2 см.
А BD = …(Дж).
+: – 0,6
I: 136.
S: Матер. точка находится в силовом поле
= ּ (x 2 ּy 2 + b 2 ּy 2 ) + (x 3 ּy + b 2 ּxּy) (H)
(k и b – постоянные). Является ли силовое поле потенциальным?
Отметьте правильный ответ.
-: Да; +: Нет
I: 137.
S: Матер. точка находится в силовом поле = , где
r 2 = x 2 + y 2 + z 2, k – заданная постоянная). Является ли силовое поле потенциальным?
Отметьте правильный ответ.
-: Да; +: Нет
I: 138.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 (см. рис.);
а = 6 см, b = 8 см. А 12 = … (Дж).
+: 0
I: 139.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки по пути М 1 РМ 2 (см. рис.); ОМ 1 = М 1 Р = РМ 2 = а = 6 см. А 12 = … (Дж).
+: 0
I: 140.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 по дуге полуокружности радиуса R = 10 см (см. рис.).
А 12 = … (Дж).
+: 0
I: 141.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы отталкивания = / r 3 от силового центра О, убывающей по величине обратно пропорционально квадрату расстояния от точки до силового центра О, F = k / r 2, k = 100 (Н/м2). Вычислить работу А 12 силы при перемещении матер. точки радиально из точки М 1 в точку М 2 (см. рис.); ОМ 1 = 10 м, ОМ 2 = 20 м (см. рис.). А 12 = … (Дж).
+: 5
I: 142.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы отталкивания = / r 3 от силового центра О, убывающей по величине обратно пропорционально квадрату расстояния от точки до силового центра О, F = k / r 2, k = 100 (Н/м2). Вычислить работу А 12 силы при перемещении матер. точки радиально из точки М 1 в точку М 2 по дуге полуокружности радиуса R = 10 м (см. рис.).
А 12 = … (Дж).
+: 0.
I: 143.
S: Матер. точка массы m движется по окружности радиуса r в поле центральной силы, имея потенциальную энергию П(r) = – , где k = const. (Центр окружности совпадает с силовым центром.) Определить значение скорости v точки при следующих числовых данных параметров: k = 9 м3/сек2 и r = 4 м.
v = … (м/с).
+: 1,5
I: 144.
S: Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Oxy. Определить работу А 12 силы тяжести при перемещении матер. точки по дуге М1М2 четверти окружности радиуса R = 10 м (см. рис.). Ускорение свободного падения приять равным g = 9,8 м/с2.
А 12 = … (Дж).
+: 196
I: 145.
S: Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Oxy. Определить работу А12 силы тяжести при перемещении матер. точки по дуге М1М2 полуокружности радиуса R = 10 м (см. рис.). Ускорение свободного падения приять равным g = 9,8 м/с2.
А 12 = … (Дж).
+: 0.
I: 146.
S: Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Oxy. Определить работу А12 силы тяжести при перемещении матер. точки по двум отрезкам ОМ1 и М1М2; высота ОМ2 = h =10 м (см. рис.). Ускорение свободного падения приять равным g = 9,8 м/с2.
А 12 = … (Дж).
+: – 196
I: 147.
S: Вычислить работу силы непотенциального силового поля
= 
(r 2 = x 2 + y 2, k – заданная постоянная) по контуру 1-2-3-4-1 радиуса r (см. рис.).
Выражение искомой работы А 1-2-3-4-1 приводится к виду: А = Qּπּk. Определить значение Q; Q = …
+: 2.
I: 148.
S: К пружине жёсткости с = 10 Н/см, один конец которой закреплён, подвешен груз веса Р = 49 (Н), лежащий на подставке так, что пружина не растянута (см. рис.). Без толчка подставка убирается. Найти максимальное натяжение Т max пружины;
Т max = … (Н).
+: 98
I: 149.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М в точку О (см. рис.); а = 6 см, b = 8 см.
А МО = … (Дж).
+: 10
I: 150.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки О в точку М (см. рис.); а = 6 см, b = 8 см.
А ОМ = … (Дж).
+: – 10
I: 151.
S: Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 (см. рис.); ОМ1 = b = 8 см, OM2 = a = 6 см. А 12 = … (Дж). +: 2,8
I: 152.
S: Ускорение свободного падения у поверхности Луны g = 1,623 м/с2. Радиус Луны R = 1728 км. Вычислить первую космическую скорость v косм 1 для Луны. (Результат вычисления округлить до целого числа.) v косм 1 = … (м/с).
+: 1675
I: 153.
S: Ускорение свободного падения у поверхности планеты Марс g = 3,71 м/с2. Радиус Марса R = 3393 км. Вычислить первую космическую скорость v косм1 для Марса. (Результат вычисления округлить до целого числа с выбором чётной цифры округления.) v косм 1 = … (м/с).
+: 3548
I: 154.
S: Ускорение свободного падения у поверхности Земли g = 9,81 м/с2. Радиус Земли R = 6378 км. Вычислить первую космическую скорость v косм 1 для Земли. (Результат вычисления округлить до целого числа с выбором чётной цифры округления.) v косм 1 = … (м/с).
+: 7910
I: 155.
S: На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l 1 = 30 см и l 2 = 70 см. На концах штанги закреплены точечные грузы с массами m 1 = 7 кг и m 2 = 3 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о по часовой стрелке.
Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2.
А = … (Дж).
+: 0.
I: 156.
S: На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l 1 = 30 см и l 2 = 70 см. На концах штанги закреплены точечные грузы с массами m 1 = 6 кг и m 2 = 4 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о по часовой стрелке.
Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2. А = … (Дж).
+: 9,8
I: 157.
S: На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l 1 = 30 см и l 2 = 70 см. На концах штанги закреплены точечные грузы с массами m 1 = 6 кг и m 2 = 4 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о против часовой стрелке.
Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2. А = … (Дж).
+: – 9,8
I: 158.
S: Груз массой m прикреплён к правому концу пружины, левый конец которой закреплён в стене. В начальном положении пружина не была деформирована. Ось x направлена вдоль оси пружины, причём начало отсчёта находится в правом конце не деформированной пружины.
Проекция силы упругости пружины равна Fx = – cּx – b ּ x 3, где x – удлинение пружины; параметры c и b имеют следующие значения: c = 2000 Н/м, b = 4 Н/м3. Вычислить работу упругой силы пружины при перемещении груза на расстояние s = 1 м. А = … (Дж)
+: – 1001
I: 159.
S: К матер. точке В присоединены две одинаковые пружины жёсткости c = 40 Н/см. Другой конец первой пружины закреплён в точке О1, а второй конец второй пружины в – точке О2 (см. рис.). Длина недеформированной пружины равна l 0 = 5 см. О1О = ОО2 = l 0. Вычислить работу сил упругости при перемещении матер. точки в точку М с координатами x М = 0, y М = 2ּ l 0 . (Результат вычисления округлить до ближайшего целого числа.) А ОМ = … (Дж).
+: – 15
I: 160.
S: К матер. точке В присоединены две одинаковые пружины жёсткости c = 40 Н/см. Другой конец первой пружины закреплён в точке О1, а второй конец второй пружины в – точке О2 (см. рис.). Длина недеформированной пружины равна l 0 = 5 см. О1О = ОО2 = l 0. Вычислить работу сил упругости при перемещении матер. точки в точку М с координатами x М = l 0, y М = l 0 . (Результат вычисления округлить до первого знака после запятой включительно.) А ОМ = … (Дж).
+: – 7,6
Date: 2015-05-18; view: 994; Нарушение авторских прав Понравилась страница? Лайкни для друзей: |
|
|