Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Понятие градиента





Рассмотрим чуть более подробно понятие градиента. В общем случае градиент вводится как векторная характеристика скалярного поля – то есть области, каждой точке которой соответствует значение определенного скаляра. Напомню, что энергия – это скалярная величина. Градиент характеризует, насколько быстро меняется скалярная величина в том или ином месте этого поля.

Наглядно это выглядит так: в данном поле проводятся линии уровня, и густота этих линий дает представление о величине градиента энергии. Направление градиента есть направление наиболее быстрого увеличения скалярной величины в данной точке (по нормали к линии уровня).

По определению, градиент скаляра – это вектор, численно равный производной по нормали к поверхности уровня в данной точке скалярного поля и направленный по этой нормали в сторону возрастания скалярной величины.

Можно сказать, что градиент – это скорость изменения физической величины, но изменения не во времени, а в пространственном направлении. В некоторых определениях так и говорится: «...вектор, равный по величине и совпадающий по направлению с максимальной скоростью изменения потенциала относительно координат».

Величина градиента (его численное значение) – это не просто скорость изменения скаляра, а максимальная скорость в этой точке (по нормали). Например, по касательной к линии уровня скалярная величина в данной точке совсем не меняется (на линии уровня значение скалярной величины одно и то же). А в разных точках, где больше градиент, быстрее меняется скаляр (линии уровня сгущаются).

В качестве примера можно взять электрическое поле и показать, что такое градиент энергии в этом случае.

Исходить я буду из разности потенциалов. Для начала приведу некоторые определения из книги И. Е. Тамма «Основы теории электричества»*.

* Тамм И. Е. Основы теории электричества. М.: Наука, 1989. С. 35.

Разность потенциалов между двумя точками электростатического поля равна взятой с обратным знаком работе, совершаемой силами поля при перемещении единичного положительного заряда из первой точки во вторую.

ф = ф 2ф 1 = – А.

В свою очередь, работа, совершаемая силами электростатического поля при перемещении заряда на отрезок ∆ s (это вектор), равна:

А = Еs,

где Е – вектор напряженности электрического поля, по определению, это сила, действующая на единичный положительный заряд. Следовательно, сила, действующая на некоторый (уже не единичный) заряд е, будет равна: F = е Е.

Из двух предыдущих выражений получаем:

ф = – А = – Еs.

Или, для бесконечно близких точек:

= – Е d s.

Отсюда, по определению градиента:

Е = –Ñ ф.

Таким образом, напряженность электростатического поля Е равна градиенту потенциала ф, взятому с обратным знаком.

Так как градиент потенциала направлен в сторону его возрастания и характеризует скорость этого увеличения, то можно сказать, что напряженность электрического поля есть мера быстроты снижения потенциала, или, проще говоря, она равна спаду потенциала.

Направление напряженности поля совпадает с направлением ортогональных траекторий эквипотенциальных поверхностей. Поэтому эти ортогональные траектории (линии градиента) совпадают с линиями электрических сил, или силовыми линиями.

Теперь, умножив в последней формуле обе части на заряд е и учитывая связь между напряженностью и силой F = е Е, а также между потенциалом и энергией W = еф, получим, что сила равна градиенту энергии:

F = –Ñ W.

Знак минус стоит в этом равенстве потому, что речь здесь идет о внешней силе, действующей на заряд, а не о внутренней, как в выражении (5.12).

Из приведенного примера видно, что линии градиента можно понимать как силовые линии, которые характеризуют распределение энергии в системе.

Другими словами, линии градиента (силовые линии) показывают, как будут разворачиваться события. Они выстраивают ту цепочку событий (последовательность состояний), которая будет реализована в конкретном случае, когда задано поле состояний (поле потенциалов), и есть исходное состояние (начальное положение объекта в поле).

Чтобы приблизиться к практически значимым вещам, зададимся теперь таким вопросом: если у нас есть некое тело или, в более общем случае, просто произвольно выделенный объем в некоторой сложной системе, то можем ли мы получить что-нибудь интересное, анализируя распределение энергии в этом объеме? В качестве «носителя» энергии может выступать все что угодно: масса, температура, давление, электромагнитные или гравитационные поля и т. д. – в принципе, любая энергия, вплоть до энергии наших мыслей и чувств.


Каждой точке выделенного объема поставим в соответствие свое значение энергии, и пусть энергия в объеме распределяется неравномерно. Таким образом, мы имеем скалярное поле, и в каждой его точке можем найти локальное значение градиента энергии. Казалось бы, эти абстрактные теоретические манипуляции ни к чему не ведут. Ну, получим мы вместо скалярного поля – векторное, будем иметь векторы (градиенты энергии) в каждой точке нашего объема, и что толку? На первый взгляд, все только усложнится, и никакой физически значимый результат мы не получим. Но давайте теперь проинтегрируем эти локальные градиенты энергии (сложим «маленькие» векторы-градиенты) по всему выделенному объему, то есть найдем полный градиент энергии в данном объеме. И получим очень интересный физический факт – наш вектор полного градиента энергии есть не что иное, как вектор силы, действующей на наш объем! Или F = Ñ W.

Таким образом, если энергия в объеме распределена неравномерно, и есть ненулевой вектор полного градиента энергии в этом объеме, то на наш выделенный элемент реальности будет действовать сила (внутренняя), равная по величине и направлению градиенту энергии. Это эквивалентно действию внешней силы, противоположной по направлению. То есть любая сила, приложенная к некоторому элементу реальности, неразрывно связана с наличием градиента энергии в этом объеме.

Физический смысл выражения (5.12) остается справедливым для любого координатного представления, для любых пространств с любой метрикой и даже при ее отсутствии. То есть оно работает даже при исходном нелокальном суперпозиционном состоянии. Скажем, изначально в Универсуме все было однородно, и не существовало пространства-времени ни на каких его уровнях (даже на тонких не было ангельского мира). А затем, если некоторые подсистемы Универсума по какой-либо причине (например, Слова) станут отличаться по своему состоянию, то есть будут обладать разной энергией, то возникнут и градиенты энергии (силы) в пространстве состояния этих подсистем (меньшей размерности, чем исходное пространство состояния Универсума). Одновременно с этим появится и пространство-время, соответствующее данным градиентам энергии, поскольку возникает неоднородность распределения энергии. И это необязательно будет наше пространство-время – возможно, это будут пространства тонких уровней реальности, все зависит от размерности подсистем. В итоге появляется целая совокупность различных уровней реальности, каждая из которых имеет свои пространственно-временные метрики.

Но при любых обстоятельствах происходит примерно следующее. Из Пустоты, находящейся вне времени и пространства, то есть из суперпозиционного состояния, «проявляются» (декогеренция) энергетические уплотнения, распределенные в пространстве определенным образом относительно друг друга, – формируется само пространство. При этом возникают и потоки энергии – она начинает перетекать оттуда, где ее больше, туда, где ее меньше, иными словами, за счет энергетических потоков система возвращается к равновесию, к равномерному распределению энергии. Появляется стрела времени со своим характерным масштабом – периодом установления равновесия. При движении к равновесию «проявившийся» мир локальных объектов снова «растворяется» в суперпозиции состояний (рекогеренция).


Выражение (5.12), как я предполагаю, «работает» для любых энергий. Изменение состояния системы ведет к изменению распределения энергии, и, следовательно, возни­кают вполне реальные, объективные градиенты энергии (силы) и ее потоки на тех уров­нях реальности, где меняется состояние, например, на астральном, ментальном и др.

Отмечу еще один существенный момент. Градиент какой-либо физической величины (в нашем случае энергии) – это не просто некий математический оператор, не просто теоретическое преобразование или манипулирование той же самой энергией (где-то в уме). Это характеристика объективного энергетического факта – неоднородности ее распределения в данном элементе реальности (силы, действующей на этот элемент). Собственно, именно благодаря объективности существования градиента его физический смысл не зависит от систем отсчета и координатных представлений, то есть от того, как мы его описываем.







Date: 2015-05-18; view: 763; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию