Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнения движения в энергетическом представлении
Попытаемся теперь на конкретном примере продемонстрировать, какую дополнительную научную информацию мы можем получить, используя предложенный подход. Кому трудно следить за математическими выкладками, может их опустить и сразу перейти к обсуждению полученного результата. Рассмотрим уравнение движения для произвольного объекта. Его легко получить на основе упомянутого выше лагранжева формализма, используя наиболее общий подход, который применяется при выводе тензора энергии-импульса произвольной системы. Напомню, что уравнение движения получают согласно принципу наименьшего действия путем варьирования D, и оно имеет вид: , (5.1) Равенство нулю дивергенции (5.1) означает, что сохраняется интеграл от тензора по гиперповерхности пространства. Этот тензор Т с компонентами Tjl (j, l = 0, 1, 2, 3) называется тензором энергии-импульса системы. Он определен неоднозначно, а только с точностью до градиента произвольного антисимметричного тензора. Для его однозначного определения можно потребовать, чтобы существовала принятая в механике связь между импульсом и моментом импульса. В этом случае получаем дополнительное условие Tjl = Tlj, то есть тензор энергии-импульса должен быть симметричен. Компонента T 00 этого тензора характеризует плотность энергии. Вектор с компонентами T 10/ c, T 20/ c, T 30/ c есть плотность импульса, а вектор с составляющими cT 01, cT 02, cT 03 – плотность потока энергии – количество энергии, протекающей в единицу времени через единицу поверхности. Ввиду симметричности тензора мы имеем связь между потоком энергии и импульсом: плотность потока энергии равна плотности импульса, умноженной на c 2. Компоненты Tik (i, k = 1, 2, 3) составляют трехмерный тензор плотности потока импульса. Взятые со знаком минус они образуют тензор напряжений. Плотность потока энергии есть вектор; плотность же потока импульса, который сам по себе вектор, должна быть тензором второго ранга. Отсюда вывод: скорость изменения энергии, находящейся в объеме V, равна количеству энергии, протекающей через границу этого объема в единицу времени, и скорость изменения импульса системы в объеме V есть количество импульса, вытекающее в единицу времени из этого объема [см. уравнения (5.4), (5.5) чуть ниже]. На этом обычно заканчивается анализ уравнений движения произвольной системы, и далее используют различные приближения, чтобы упростить общий вид тензора энергии-импульса в конкретных частных задачах. Однако уже в общем случае тензора энергии-импульса произвольной системы нас не устраивает та часть интерпретации уравнений движения, в которой используется импульсное представление. Оно более подходит для описания локальных объектов, а в нашей ситуации, когда мы имеем дело с непрерывными полевыми структурами, предпочтительно использовать энергетическое представление. Поэтому сейчас мы постараемся от импульсной интерпретации перейти к энергетической и проанализируем уравнения движения уже в этих терминах. Рассмотрим эти уравнения. Они получаются из (5.1) разделением на пространственные и временные производные: , (5.2) . (5.3) Эти уравнения затем интегрируются по некоторому произвольному объему пространства V, и применяется теорема Гаусса. , (5.4) . (5.5) Интеграл справа берется по поверхности, охватывающей объем V (df 1, df 2, df 3 – компоненты трехмерного вектора элемента поверхности d f). Рассмотрим более подробно второе уравнение (5.5), поскольку результаты, полученные при его анализе, будут широко использоваться в дальнейшем. Левая часть не вызывает вопросов – здесь стоит скорость изменения импульса в объеме V, то есть сила, действующая на этот объем. А вот в правой части мы перейдем к энергетическому представлению и для этого воспользуемся аппаратом дифференциальной геометрии, теоретические основы которого изложены в книге Б.А.Дубровина, С.П.Новикова, А.Т.Фоменко «Современная геометрия: Методы и приложения» (М.: Наука, 1986). Достаточно подробное описание того, как эти методы применяются в физике, в частности, к тензору энергии-импульса, содержится в книге Ч.Мизнера, К.Торна, Дж.Уилера «Гравитация», т. 1 (М.: Мир, 1977). Очень кратко напомню смысл основных понятий дифференциальной геометрии, которыми нам придется оперировать. Прежде всего это касается еще одного геометрического объекта – «дифференциальной формы», который наряду с другими хорошо известными геометрическими объектами (скаляр, вектор, тензор) описывает физические величины. В частности, более подробно рассмотрим понятие 1-формы. Может возникнуть закономерный вопрос: зачем вообще нужны дифференциальные формы, и нельзя ли обойтись хорошо известными старыми понятиями? Чтобы ответить на этот вопрос, приведу следующий пример из книги Мизнера-Торна-Уилера. Рассмотрим привычное определение вектора 4-импульса p для частицы, например электрона, с массой m и вектором 4-скорости u, то есть p = m u. Кроме этого, в физике известен и другой подход к понятию импульса, при котором каждой частице приписывается волна де Бройля. Эта волна имеет самый непосредственный физический смысл, ее дифракция на кристаллической решетке позволяет определить не только длину волны, но и ту конфигурацию в пространстве, которую образуют поверхности равных целочисленных значений фазы. Конфигурация этих поверхностей дает простейшую иллюстрацию, которую удается найти для 1-формы. Определив эти поверхности посредством выражения ћ ´ фаза, получим «1 -форму импульса» . Посмотрим, что может дать такое представление импульса. Возьмем произвольный 4-вектор v. Он пересечет определенное число поверхностей целой фазы. Обозначим это число пересечений посредством выражения á , v ñ. Как правило, начало и конец вектора v не лежат на поверхностях целочисленных фаз. Чтобы определить более точное значение числа пересечений (перейти от целого числа к вещественному), необходимо в этих позициях между соседними поверхностями целой фазы распределить бесконечное число поверхностей со всеми промежуточными значениями фазы. Далее, чтобы понятие 1-формы стало рабочим инструментом, нужно сделать еще один небольшой шаг. Необходимо трактовать 1-форму не как глобальную конфигурацию поверхностей уровня, а как некоторую аппроксимацию этих поверхностей в элементарном, бесконечно малом объеме в виде плоских поверхностей, расположенных на равных расстояниях друг от друга (линейное приближение). Плоские поверхности 1-формы в этом малом объеме дадут наилучшую линейную аппроксимацию искривленных поверхностей уровня, а сама 1-форма становится линейной функцией, и появляется возможность оперировать ею, как и любой другой функцией. Нетрудно убедиться, что совокупность всех 1-форм в данном событии (4-точке) образует векторное пространство в абстрактном, алгебраическом смысле этого понятия. Существует и взаимно однозначное соответствие между произвольным вектором n и соответствующей ему 1-формой ñ в виде á ñ, v ñ = n · v, то есть число пересеченных поверхностей произвольным вектором v у некоторой 1-формы ñ равно проекции вектора v на вектор n (точка обозначает скалярное произведение). Таким образом, дифференциальная геометрия дает исследователю надежный математический формализм, позволяющий установить взаимнооднозначное соответствие между локальным точечным описанием физических величин (импульс в данной точке в виде вектора) и нелокальным описанием (тот же импульс, но уже в объеме, окружающем эту точку в виде 1-формы). А значит, учитывая наши цели, необходимо поближе познакомиться с этим геометрическим объектом (небольшое дополнение см. в Приложении). Нам понадобится еще одно понятие дифференциальной геометрии. Это 1-форма объема. Достаточно будет ограничиться частным случаем этого понятия для трехмерного куба в системе отсчета, относительно которой он находится в покое. Тогда 1-форма объема с 4-скоростью u и ребром L определяется как S = – V u = L 3 d t в случае стандартной положительной ориентации u в прошлое (u = – d t) или в другом варианте S = L 2D t d x. По своему геометрическому смыслу 1-форма объема представляет собой объем, «заметаемый» со временем либо за счет движения самого объема (первый вариант), либо за счет движения одной из его граней, например, площадки Syz = L 2 в направлении x со скоростью u (второй вариант). 1-форма произвольного объема может быть проанализирована путем разбиения ее на введенные элементарные объемы. Теперь мы располагаем уже всеми необходимыми понятиями, чтобы сформулировать определение* тензора энергии-импульса в терминах дифференциальных форм: тензором энергии-импульса называется линейный оператор с двумя входными каналами, в один из которых вводится 1-форма объема S, а в другой – произвольный вектор w или 1-форма s, и в результате получается проекция 4-импульса на этот вектор или 1-форму соответственно, то есть T (w, S) = w · p, T (s, S) = á s, p ñ. (5.6) Это определение позволяет легко получить компоненты тензора энергии импульса в чисто энергетическом представлении, поскольку проекция импульса p на 4-вектор скорости наблюдателя u дает энергию, измеренную наблюдателем, взятую с обратным знаком, то есть W = –u · p. * Ч. Мизнер, К. Торн, Дж. Уилер. Гравитация. Т. 1. М.: Мир, 1977. С. 176. Пространственные компоненты Tik из (5.5) можно интерпретировать, если рассмотреть двумерную грань 1-формы объема, положительная нормаль к которой направлена по k. За время D t эта поверхность «заметает» 3-объем, 1-форма которого равна S = L 2^ k D t d xk. Поместим наблюдателя на эту поверхность. В отличие от общепринятого подхода, когда наблюдатель неподвижно сидит на поверхности и измеряет проекции импульса, пересекающего площадку на направления единичных векторов в своей лоренцевой системе, мы заставим наблюдателя двигаться с некоторой скоростью u поочередно вдоль всех своих координатных осей. За время D t он сканирует всю площадку и прилегающий объем, отмечая происходящие изменения. Проецируя 4-импульс D p, пересекающий поверхность, на свою скорость, наблюдатель получает информацию о распределении энергии в различных направлениях. На первый взгляд может показаться, что такой подход лишен смысла, поскольку численное значение энергии, полученное наблюдателем, зависит от его собственной скорости, и результат измерения будет неоднозначным. Однако, как будет показано ниже, существует энергетическая характеристика, не зависящая от скорости наблюдателя и имеющая однозначный физический смысл. Обозначим компоненты скорости наблюдателя через u i = (D xi /D t)e i. Тогда компоненты Tik можно определить из (5.6): u i · D p = – D W = T (u i, S), (5.7) или в компонентных обозначениях, –D W = (D xi /D t) L 2^ k D t T (e i, d xk) = D xi L 2^ k Tik, (5.8) . (5.9) Устремляя интервал времени к нулю и воспользовавшись определением градиента, получим –Ñ iW / L 2^ k = Tik. (5.10) Отметим, что, в отличие от величины энергии, зависящей от собственной скорости наблюдателя, значение градиента энергии Ñ iW уже не зависит от его скорости, поскольку одно и то же смещение координаты наблюдателя D xi входит как в числитель (в выражение скорости), так и в знаменатель. В этом результате нет ничего удивительного, если вспомнить, что по своему определению градиент является линейным оператором, физический смысл которого не зависит от системы отсчета. При этом не имеет значения, о какой энергии идет речь – либо о полной энергии, распределенной в рассматриваемом элементарном объеме, включающей энергию покоя m 0 c 2, как это принято, например, в релятивистской механике, либо только о кинетической энергии, как принято в классической механике. Можно даже произвольно выбрать уровень отсчета энергии, исходя из каких-то иных соображений – значение градиента энергии как объективно существующей физической характеристики при этом не изменится. Для определенности будем считать, что речь идет о полной энергии, содержащейся в объеме. Можно рассматривать и более сложные ситуации, когда отдельные составляющие энергетической структуры имеют градиент энергии относительно других составляющих (возможно, со своим градиентом), тогда записываются уравнения движения для каждой из них. Сравнивая выражение (5.10) с обычной трактовкой пространственных компонент тензора энергии-импульса в терминах потока импульса, нетрудно заметить, что справедливо покомпонентное тождество Ñ iW ≡ –D pi /D t, связывающее энергетическое и импульсное представления компонент тензора энергии-импульса. Еще более простой физический смысл имеет дивергенция от компонент тензора, стоящая в интеграле по объему в выражении (5.5). Устремляя исходный 3-объем к нулю и имея при этом L 2^ k ® ¶ S ^ k, получим , (5.11) то есть i -компоненту градиента энергии, приходящуюся на единицу 3-объема, или i -компоненту объемной плотности градиента энергии. Уравнения движения (5.5) теперь приобретают простой физический смысл: они связывают силу, действующую на произвольный выделенный объем, и градиент энергии в этом объеме. Итак, основной вывод можно сформулировать следующим образом: сила, действующая со стороны произвольного выделенного объема рассматриваемой системы, равна градиенту энергии во всем этом объеме, то есть F = Ñ W. (5.12) На первый взгляд, мы получили самый обычный второй закон Ньютона, ничего нового, как может показаться, здесь нет, и непонятно, зачем вообще надо было применять сложный математический аппарат дифференциальной геометрии. Но это впечатление обманчиво. Основная особенность такой формы записи, а одновременно и преимущество используемого подхода в том, что это уравнение, трактуемое в терминах дифференциальных форм, – общековариантно. Оно не зависит от систем отсчета (это справедливо и для обычного понятия градиента). Более того, для градиента, понимаемого как 1-дифференциальная форма, вид этого уравнения не зависит от размерности пространства, от его метрики, и справедливо оно даже при полном ее отсутствии (дифференциальная топология). Таким образом, это уравнение продолжает работать и в том случае, когда, например, объект перешел в чистое запутанное состояние, то есть стал нелокальным, и нет возможности ввести его координатное представление. Это уравнение обобщает второй закон Ньютона и может служить его аналогом для «тонких» структур, оно работает не только в плотном материальном мире, но и на любых квантовых уровнях реальности. Итак, можно сделать вывод, что одной из основных физических характеристик объекта является плотность градиента энергии в его объеме. Трактовка пространственных компонент тензора энергии-импульса в терминах градиента энергии и традиционное описание в терминах потока импульса эквивалентны. Каждое из них обладает своим преимуществом в зависимости от ситуации. Импульсное представление более удобно, когда система моделируется в виде совокупности материальных точек с сосредоточенными параметрами. Преимущества энергетического представления тензора энергии-импульса проявляются в тех случаях, когда рассматриваемая система описывается непрерывными физическими величинами, или когда отдельный объект нельзя рассматривать в виде материальной точки, и необходимо учитывать пространственное распределение физических величин, характеризующих данный объект. Нас прежде всего интересует вторая ситуация. В этом случае непосредственно из уравнения (5.12) последовательно вытекает ряд очевидных следствий. Кратко можно обозначить лишь некоторые, наиболее существенные из них. 1. Свободный объект (при отсутствии внешних воздействий) может находиться в покое или двигаться равномерно и прямолинейно только при нулевом значении градиента энергии во всем объеме рассматриваемого объекта. 2. Из линейности тензора энергии-импульса (как линейного оператора) следует, что любая внешняя сила, действующая на объект, характеризуется соответствующим ей градиентом энергии внутри тела, то есть произвольный объект (как свободный, так и находящийся под внешним воздействием), двигающийся с ускорением, имеет в своем объеме соответствующий этому ускорению градиент энергии. 3. Ускорение тела есть процесс перехода в состояние с равновесным распределением энергии, «выравнивание» градиента энергии в своем объеме за счет ускоренного движения. Во внешнем градиентном поле объект всегда будет двигаться с ускорением. 4. Из уравнения (5.12) и последующих рассуждений следует разумное объяснение физической природы гравитации. Для этого достаточно лишь отказаться от моделирования физических тел в виде материальных точек, как это принято в механике Ньютона и общей теории относительности, и учесть распределение энергии в объеме реального объекта. Если исходить из определения равновесного состояния свободного тела, силы тяготения естественным образом объясняются нарушением равновесного распределения энергии и возникновением градиента энергии у каждого из тяготеющих тел в результате взаимодействия их энергетических составляющих. С этой точки зрения гравитационное поле объекта характеризуется градиентом среднего значения энергий различных физических полей в системе, и нет смысла искать, например, кванты гравитационного поля. Для тел, моделируемых материальными точками, такое объяснение гравитации уже неприменимо. 5. С предыдущим вопросом тесно связан вопрос об инертности тела и силах инерции. Дополняя определение равновесного состояния тела принятым в статистической физике понятием релаксации системы, инертность тела можно сопоставить с процессом возникновения или релаксации градиентов энергии при нарушении равновесного состояния системы. Силы инерции, согласно общему выражению (5.12), можно определить как градиенты энергии, связанные с неинерциальными системами отсчета. Таким образом, решается вопрос об эквивалентности сил инерции и тяготения. Они неотличимы друг от друга, так как в их основе лежит одна и та же физическая природа – градиент энергии в объеме тела. 6. Исходя из общего характера уравнения (5.12), можно сформулировать и более сильное утверждение: любая физическая сила в природе обусловлена наличием градиента энергии в рассматриваемой системе. 7. Уравнение (5.12) способно стать теоретической основой, позволяющей с единых позиций рассмотреть все многообразие процессов и явлений, изучаемых в различных разделах физики и других естественных науках. Открывается возможность взаимной интеграции многочисленных теорий и получения новых количественных соотношений, связывающих эти процессы. Например, к понятию электрического заряда можно подойти с точки зрения нарушения равновесного состояния системы. Отрицательный заряд при этом соответствует избытку энергии, а положительный – недостатку. Это позволяет в едином ключе рассматривать электродинамические и механические процессы. Первые пять следствий сформулированы для объекта, рассматриваемого как единое целое. Однако уравнение (5.12) справедливо для произвольно выделенного объема внутри системы, и на его основе можно описывать движение ее составных частей относительно друг друга. Date: 2015-05-18; view: 524; Нарушение авторских прав |