Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Квантовая шина





Еще одно необходимое устройство для квантового компьютера – квантовая шина для обмена информацией. Об этом также можно прочитать в Интернете*:

«„Виртуальная шина“, по которой курсируют биты информации, может стать краеугольным камнем в архитектуре квантовых компьютеров», – заявляют ученые из американского Национального Института стандартов и технологий (NIST). Но, как ученые замечают далее, он должен еще быть разработан, что не входит на сегодняшний день в планы большинства компаний. По словам физика-атомщика NIST Карла Уильямса (Carl Williams), несколько авторов описали базовые требования для построения масштабируемых квантовых компьютеров, включая необходимость взаимодействия произвольных пар кубитов. Отработка четкого механизма этого взаимодействия является, однако, нерешенной проблемой. По словам коллег Уильямса, их подход состоит в том, чтобы делить физические кубиты на статические зоны, сохраняющие квантовую память, и динамическую шину для кубитной связи зон. Как известно, основы современной архитектуры ПК были заложены в работах венгерского математика фон Неймана в 1945 году. Классическая модель состоит из 4 основных компонентов: памяти, системы ввода/вывода, логического блока и блока управления; для их связи используются физические шины, по которым пересылаются биты информации от одного модуля к другому. В отличие от физической, предлагаемая квантовая шина, как отмечает эксперт Национальной лаборатории в Лос-Аламосе Мэни Нилл(Manny Knill), является «виртуальной, которую лучше представлять как виртуальную локальную сеть соединений для масштабной параллельной архитектуры квантовых компьютеров». По мнению Нилла, Уильямс с коллегами первыми предложили детально разработанные стратегии для применения квантовой шины в стандартных массивах кубитов конкретно для того, чтобы использовать их в квантовых компьютерах. В работающем компьютере ни один кубит не обособлен. Кубиты памяти должны взаимодействовать друг с другом, а также с блоками логики, управления и ввода/вывода. Для облегчения связи другие ученые предлагают вместо квантовой шины «летающие» кубиты, парящие внутри компьютера и сближающиеся для обмена информацией. Модель превращенияматериальных кубитов в «летающие», являющиеся чаще всего фотонами, может быть еще одним возможным решением проблемы. Однако разработка необходимого соединения между веществом и фотонами, или стационарными и «летающими» кубитами, сопряжена со многими трудностями. Концепция шины обходится без сцепки между «летающими» и стационарными кубитами. Как отмечает г-н Нилл, исследования квантовых шин важны потому, что квантовые компьютеры в обозримом будущем должны обладать масштабируемым параллелизмом. И далее подчеркивает: «В будущем физическое или виртуальное соединение будет необходимо для всех архитектур квантового компьютера».

* http://www.relcom.ru/Right?id=20030117161000.

В последнее время экспериментаторы начали восполнять этот пробел и интенсивно работают над квантовой шиной. «Летающие» кубиты стали объектом исследований во многих физических лабораториях. В 2004–2005 годах только в одном Nature публикации с результатами экспериментальных работ в этом направлении составляли уже довольно внушительный список*, в который нужно добавить все работы по квантовой памяти, поскольку процессы хранения и передачи квантовой информации неразрывно связаны.

* Blinov B. B., Moehring D. L., Duan L.-M. and Monroe C. Observation of entanglement between a single trapped atom and a single photon, Nature 428, 153 (2004);

Chou C. W., de Riedmatten H., Felinto D., Polyakov S. V., van Enk S. J. and Kimble H. J. Measurement-induced entanglement for excitation stored in remote atomic ensembles, Nature 438, 828 (2005);

Chaneliere T., Matsukevich D. N., Jenkins S. D., Lan S.-Y., Kennedy T. A. B. and Kuzmich A. Storage and retrieval of single photons transmitted between remote quantum memories, Nature 438, 833 (2005);

Eisaman M. D., Andre A., Massou F., Fleischhauer M., Zibrov A. S. and Lukin M. D. Electromagnetically induced transparency with tunable single-photon pulses, Nature 438, 837 (2005).

Последние три статьи из этого списка опубликованы в одном номере Nature (8 декабря 2005 года). В первой из них говорилось о методике создания запутанного состояния между двумя пространственно разнесенными объектами. Ее авторы сообщали о запутывании двух систем, состоящих из порядка 105атомов, удаленных друг от друга на 2,8 м. В двух других статьях описывался реализованный на практике процесс передачи квантовой информации от одного атомного ансамбля к другому посредством фотонных кубитов. Причем исследователи осуществили всю цепочку операций, необходимых для устойчивой квантовой связи. А именно – управляемую генерацию единичного фотона в одном узле (в ансамбле атомов рубидия); пересылку по оптоволокну на 100 м к другому узлу, где квантовая информация некоторое время хранилась в коллективном нелокальном состоянии, а затем она была вновь восстановлена в виде фотона без существенной потери квантовой информации. По существу была создана примитивная квантовая сеть между двумя разнесенными узлами. Предполагается, что такие квантовые сети постепенно придут на смену классическим. Информация, которую мы получаем сейчас по Интернету, доходит до нас по оптическим волокнам закодированнойв сантиметровые лазерные импульсы. Все идет к тому, что эту информацию вскоре научатся передавать не в виде обычных битов, а в квантовой форме – посредством кубитов. Таким образом, физики продемонстрировали возможность телепортации состояния на длинные расстояния, и, следовательно, квантовые сети посредством телепортации могут связать нелокальными корреляциями удаленные узлы в единое целое.


В начале 2006 года в Phys. Rev. Lett., также в одном номере*, были опубликованы две статьи об экспериментальных работах, продолжающих эти исследования. Но в них основной упор делается уже на технические детали – такие, как выбор оптимальной длины волны единичных фотонов, подходящей для коммуникации на больших расстояниях: в первой работе использовалась длина волны 1,5 микрон, во второй 0,78 микрон.

Таким образом, «летающие» или курсирующие по оптоволокну кубиты постепенно становятся обыденной реальностью, и их создание уже не считается большим научным достижением.

* Volz J., Weber M., Schlenk D., Rosenfeld W., Vrana J., Saucke K., Kurtsiefer C. and Weinfurter H. Phys. Rev. Lett. 96, 030404 (2006);

Matsukevich D. N., Chaneliere T., Jenkins S. D., Lan S.-Y., Kennedy T. A. B., and Kuzmich A. Phys. Rev. Lett. 96, 030405 (2006).

В этой области делаются также первые шаги к промышленным технологиям. Ученые из Кембриджа (Великобритания) экспериментально продемонстрировали* возможность получения запутанных фотонных пар при помощи простых полупроводниковых светодиодов. Эти запутанные пары могут применяться, в том числе, и в схемах квантовой коммуникации, курсируя по квантовым шинам и связывая нелокальными корреляциями отдельные узлы. Как пишут авторы, такая генерация запутанных пар «по требованию» обладает существенными преимуществами перед другими способами их получения и может найти широкое применение в различных квантово-информационных устройствах.

* Stevenson R. M., Young R. J., Atkinson P., Cooper K., Ritchie D. A. and Shields A. J. Nature 439, 179 (2006).

На этом я закончу краткий обзор экспериментальных исследований и разработок «железа» для квантового компьютера.

По мнению многих ученых, работающих в области квантового компьютинга, результаты научных разработок приблизятся к стадии коммерческого применения примерно к 2020 году. К этому же времени будет достигнут предел в существующей полупроводниковой технологии, поскольку уже сейчас дорожки, по которым внутри процессоров распространяется электрический сигнал, имеют ширину, составляющую сотни атомов. Дальнейшее их сужение возможно лишь до определенного предела. Уже сейчас начинают появляться фирмы, которые, ориентируясь на перспективу, планируют связать свою основную деятельность сквантовым компьютингом. Например, в Санта-Барбаре (штат Калифорния, США) основана первая коммерческая компания – Quantumatics*, которая собирается работать в области квантовых вычислений. Quantumatics планирует получать прибыль там, где прежде доминировали работы исследовательского и академического характера. Фирму возглавил физик Джованни Росса (Giovanni A. della Rossa). Он не является новичком в организации компаний, опирающихся на высокие технологии, в частности, в 1980 году он основал Eidos – первую компанию в Италии, специализирующуюся на компьютерной графике. По поводу своих планов он говорит так: «Я собираюсь создать первое поколение квантовых компьютеров – „машин“, которые могут быть использованы как для развития собственно вычислений, так и для развития физики. Физика должна быть лучше изучена на квантовом уровне, и никакой другой инструмент не подойдет для этой цели лучше, чем квантовый компьютер!»







Date: 2015-05-18; view: 493; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию