![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Massless Dirac equation
We briefly discuss here the relation between the massless Dirac spectrum of graphene and lowenergy electronic states of nanoribbons. The electronic states near the two non-equivalent Dirac points (K ±) can be described by 4×4 Dirac equation, i.e. Here, magnetic field. γ is a band parameter, which satisfies γ = √3 ta /2. F A K ±(r) and F B K ±(r) are the envelope functions near K ± points for A and B sublattices, which slowly vary in the length scale of the lattice constant. We can rewrite the above effective mass Hamiltonian by using the Pauli matrices τ x , y, z for valley space (K ±) as Here, τ0 is the 2×2 identity matrix. We can easily obtain the linear energy spectrum for grapheme
2.2.1. Zigzag nanoribbons. The low-energy electronic states for zigzag nanoribbons can also be described starting from the Dirac equation [10, 71]. Since the outermost sites along the first (N th) zigzag chain are B(A)-sublattice, an imbalance between two sublattices occurs at the zigzag edges leading to the boundary conditions φ K ± A(r [0]) = 0, φ K ± B(r [ N +1]) = 0, (10) where r [ i ] stands for the coordinate at the i th zigzag chain. The energy eigenvalue and wavenumber is given by the following relation:
where η = √ k 2 −ε. It can be shown that the valley near k = 3π/2 a in figure 1(b) originates from the K +-point, the other valley at k = −3π/2 a from the K −-point [10, 71]. 2.2.2. Armchair nanoribbons. The boundary condition of armchair nanoribbons projects K + and K − states into the 0 point in the first BZ as can be seen in figure 2(b). Thus, the lowenergy states for armchair nanoribbons are the superposition of K + and K − states. The boundary condition for armchair nanoribbons [71] can be written as
If the ribbon width W satisfies the condition of W = (3/2)(N w +1) a with N w = 0,1,2,..., the system becomes metallic with the linear spectrum. The corresponding energy is given by n, k, s
1s = 4πγ/3(N w +1) a, (15) which is inversely proportional to ribbon width. It should be noted that a small energy gap can be acquired due to the Peierls distortion for half-filling at low temperatures [69, 70], but such an effect is not relevant for single-channel transport in the doped energy regime. Date: 2015-05-09; view: 621; Нарушение авторских прав |