Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Поперечный характер электромагнитных волн
В предыдущих параграфах мы рассмотрели основные свойства гармонических волн, вытекающих из очевидных и общих представлений о зависимости колебаний их векторов электрического и магнитного полей от времени и расстояния, пройденного волной от источника до точки наблюдения. Обоснуем эти соображения прямым решением системы уравнений Максвелла вместе с материальными уравнениями (1.1a) относительно четвёрки векторов
Отсюда следует, что одним из решений системы (1.4) являются электростатическое и магнитостатическое поля, поскольку проекции на ось Тогда, очевидно,
представляют постоянные электрическое и магнитное поля, ориентированные вдоль направления распространения плоской волны, накладывающиеся на меняющееся во времени электромагнитное поле волны и не зависящие от него. По этой причине без ограничения общности можно полагать их равными нулю, т.е.:
Следовательно, отличными от нуля компонентами плоской электромагнитной гармонической волны, распространяющейся вдоль оси перпендикулярные Отсюда следует важный вывод, что вектора напряжённости электрического и магнитного полей плоской электромагнитной гармонической волны колеблются в плоскости, перпендикулярной направлению распространения волны. Волны, обладающие таким свойством, называются поперечными. Следовательно, электромагнитные волны являются поперечными волнами (рис.1.3).
Поляризация колебаний плоской гармонической электромагнитной волны. Второй важный вывод, который можно сделать из системы уравнений (1.4), состоит в том, что эта система уравнений представляет собой две независимые системы уравнений: первая состоит из уравнений (1.4b), (1.4g), определяющих
вторая состоит из уравнений (1.4c), (1.4f), определяющих
Существование двух независимых друг от друга систем дифференциальных уравнений (1.5) и (1.6) позволяет рассматривать плоскую гармоническую волну с произвольной ориентацией вектора напряженности электрического поля электромагнитной волны в плоскости волнового фронта в виде суммы двух независимых плоских гармонических волн той же частоты, что и исходная, направления колебаний векторов напряженности электрического и магнитного полей взаимно перпендикулярны. Эта особенность векторного характера колебаний электромагнитной волны следует из законов электромагнетизма, составляющих физическую основу уравнений Максвелла. Действительно, пусть первоначально было переменное во времени электрическое поле
Рис. 1.4.
Возможность представления произвольной плоской гармонической электромагнитной волны в виде суммы двух независимых волн с перпендикулярно колеблющимися в одной фазе по отношению друг к другу парами векторов напряженности электрического и магнитного полей определяет свойство поляризации электромагнитной волны.Поляризация электромагнитной волны определяется направлением колебаний вектора напряженности электрического поля. В рассматриваемом случае плоская волна, распространяющаяся вдоль оси а) волны с горизонтальной поляризацией, определяемые колебаниями векторов б) волны с вертикальной поляризацией, определяемые колебаниями векторов На рис.1.5 изображены направления колебаний соответствующие горизонтальной и вертикальной поляризации электромагнитных волн, распространяющихся со скоростью
. Рис. 1.5
Волны с линейной поляризацией являются простейшими поляризованными волнами. Более сложным видом поляризации волн является круговая поляризация. В плоской электромагнитной волне круговой поляризации вектора напряженности электрического и магнитного поля равномерно вращаются вокруг своего направления распространения, образуя в каждый момент времени вместе с волновым вектором правую тройку векторов. Вращение указанных выше векторов может происходить как против часовой стрелки, так и по часовой стрелке, если смотреть с конца волнового вектора. Волны круговой поляризации волны с вращением векторов поля по часовой стрелке и против часовой стрелки являются волнами с ортогональными поляризациями. В соответствии с этим говорят о волнах, поляризованных по правому и левому кругу.
Рис. 1.6.
Волновое уравнение. Связь амплитуд и фаз векторов напряженности электрического и магнитного полей плоской электромагнитной волны. Ввиду независимости колебаний волн с ортогональными поляризациями дальнейший анализ свойств распространения плоской электромагнитной сосредоточим на изучении свойств волны одной какой-нибудь поляризации, например, горизонтальной с компонентами электрического и магнитного поля, соответственно равными
Если подставить значения электрической и магнитной где В силу соотношения (1.7) для определения E y получаем волновое уравнение:
Аналогично получается волновое уравнение для Уравнение (1.8a) называется волновым, в частности, из-за того, что его решением является3 плоская электромагнитная волна, определённая выше соотношением (1.3) для колебаний вектора напряжённости электрического поля: где волновое число - зависящее в общем случае от относительных диэлектрических и магнитных Аналогичным образом можно убедиться, что решением волнового уравнения являются колебания вектора напряжённости магнитного поля
В выражениях (1.9) Между амплитудами и фазами колебаний электрической и магнитной компонент электромагнитной волны имеются соотношения, следующие из системы уравнений (1.6) для горизонтальной поляризации
Очевидно, для того, чтобы эти соотношения были справедливы для любых Если это соотношение имеет место, то из (1.10) следуют два равенства, связывающие амплитуды электрической и магнитной компоненты
Перемножая эти равенства, получаем соотношение между амплитудами электрической и магнитной компонент плоской электромагнитной волны:
Размерность коэффициента пропорциональности в соотношении (1.11b) между амплитудами электрической и магнитной компонент плоской волны, совпадает с размерностью ' сопротивления '. Действительно: размерность величины По этой причине величина
называется волновым сопротивлением среды распространения электромагнитных волн. Для волны, распространяющейся в вакууме (в сухом воздухе)
Величина Для вертикальной поляризации плоской волны с компонентами электрического и магнитного полей Определим единичный вектор Рассматривая (1.11) для двух возможных поляризаций плоской электромагнитной волны можно сделать вывод, что тройка векторов, состоящая из С помощью вектора
Верным является и обратное соотношение:
И кроме того,
На рис.1.8 изображена "мгновенная фотография" колебаний векторов напряжённости плоской электромагнитной волны, распространяющейся вдоль оси В дальнейшем при изучении свойств электромагнитных волн с вектором
модуль которого определяется волновым числом (длиной волны), а направление совпадает с направлением распространения электромагнитной волны. В соответствии со сказанным выше тройка векторов, состоящая из Date: 2015-05-09; view: 1078; Нарушение авторских прав |