Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Трещинные коллекторы
По формированию пустотного пространства трещинные коллекторы отличаются от других типов. Для определения трещинной пустотности и проницаемости существуют особые способы. Как уже упоминалось, существуют макро- и микротрещины с раскрытием соответственно более или менее 0,1 мм. Макротрещины обычно изучаются, описываются и измеряются в поле на обнажении, а микротрещины — под микроскопом в шлифах часто увеличенного размера. Необходимым элементом при исследовании трещин является определение их ориентации как в пространстве (вертикальные, горизонтальные, наклонные), так и по отношению к пласту (по слоистости, поперек слоистости, диагональные) и к структурным формам (продольные, поперечные, радиальные и др.). В генетическом отношении выделяются литогенетические и тектонические трещины (табл. 6.4). Литогенетические трещины по приуроченности к определенным стадиям подразделяются на диагенетические, катагенетические гипергенетические. Тектонические трещины различаются по причинам, их вызывающим: колебательные движения, складчатые и разрывные дислокации. Одни виды трещин могут переходить в другие, но в принципе опытный геолог всегда отличит литологическую трещиноватость от тектонической. Как правило, литологическая трещиноватость приспосабливается к структурно-текстурным особенностям породы. Трещины ветвятся, огибают отдельные зерна, в целом расположение их хаотично. Поверхность стенок трещин неровная. Тектонические трещины более прямолинейны, они меньше считаются со структурно-текстурными особенностями пород, поверхность их стенок более гладкая и переходит иногда в зеркала скольжения. Различные породы в разной степени подвержены трещинова-тости. Наибольшей способностью к растрескиванию обладают мергели и пелитоморфные известняки, затем следуют кремнистые породы, сланцы, песчаники. Наименее трещиноваты соли. Подмечено, что существует определенная зависимость между толщиной пластов и интенсивностью трещиноватости — при одном и том же составе в более мощных пластах расстояния между трещинами больше. Наблюдения из космоса, материалы аэрофотосъемок, описания обнажений показывают, что существуют трещины и трещинные зоны разных масштабов. Выделяются элементы очень крупной планетарной системы трещиноватости, приуроченные, возможно, к сочленениям крупных тектонических блоков земной коры. Эти трещиноватые зоны являются основой так называемых линеаментов на поверхности Земли. Одна из крупных линеамент-ных зон прослеживается от Урала, через Среднюю Азию уходит в район Персидского залива и далее в Оман (Урало-Оманский линеамент). Другие меньшие по размерам линеаменты, отражающие зоны повышенной трещиноватости, известны в Восточном Предкавказье. Выделение и картирование таких зон является первостепенной задачей особенно в практическом отношении. Важным является вопрос о выполнении трещин. Они могут быть свободными и частично или полностью выполнены какими-либо веществами, высадившимися из циркулирующих в них растворов. Чаще всего трещины заполнены карбонатными минералами, кварцем, сульфатами, глинистым материалом (часто пропитанным битуминозным веществом) и остаточными продуктами преобразования углеводородов (черно-битумные трещины). На стенках трещин нередко встречается и капельно-жидкая нефть. Основными элементами трещин при замерах являются их ориентировка (в пространстве, по отношению к пластам и др.), их протяженность и раскрытость. Кроме того, можно говорить о густоте и плотности трещин. При определении густоты учитыва- ется количество трещин одной (!) системы на единицу длины по перпендикуляру к этой системе трещин. Для макротрещин за единицу длины берется 1 м, для микротрещин (определяется в шлифах) — 1 мм. Под плотностью трещин принимается общее количество всех (!) систем в единице объема или на единице площади (поверхность обнажения, площадь шлифа). Пустотное пространство трещинных коллекторов подразделяется на две категории. С одной стороны, это поры и другие пустоты в матрице породы (в ненарушенных трещинами блоках), с другой стороны — объем самих трещин, связанных с ними каверн и т.д. Свойство пород блоков (матрицы) определяется обычным способом. Объем трещин обычно не велик, но вследствие сравнительной простоты структуры, преобладающей прямолинейности трещин фильтрация через них может быть весьма эффективна. Трещинная пустотность — это отношение объема трещин к объему породы: где b — раскрытость трещин (среднестатистическое расстояние между стенками трещин); 1 — общая их протяженность в образце; S — площадь изучения. Зависимость проницаемости трещин от раскрытости и трещинной пустотности выражается соотношением: где b — раскрытость трещин, мм; mт — трещинная пустотность, доли единицы; Кт — трещинная проницаемость, мкм2. Приведенное соотношение справедливо для тех случаев, когда поверхности стенок трещин перпендикулярны к поверхности фильтрации. При наличии нескольких систем трещин и их различной ориентированности по отношению к потоку фильтрации следует применять различные числовые коэффициенты. Кроме изучения в образцах (макротрещиноватость) и в шлифах (микротрещиноватость) трещиноватость изучают также геофизическими и гидродинамическими методами, фотографированием стенок скважин, но каждый из этих методов имеет свои погрешности. Степень трещиноватости пород и, следовательно, выделение соответствующих зон в разрезе могут быть произведены на основе данных акустического каротажа (АК). Карбонатные породы, в которых часто развиты трещины, представляют неоднородные среды, распространение волн в которых определяются структурой и текстурой породы, величиной и характером пустотного пространства, типом его заполнения. Существенное влияние оказывают трещины. По условному коэффициенту относительной трещиноватости, представляющему со- бой отношение скорости прохождения ультразвука в породе с трещинами к скорости волн в монолитной породе, можно подразделить карбонатный разрез, выделить интервалы максимальной трещиноватости там, где этот коэффициент меньше. Также существенное влияние оказывают различные заполнители. Установлено, что водонасыщенные трещиноватые породы характеризуются более высокими значениями скорости продольных волн и меньшей анизотропией, чем газосодержащие. Возрастание скорости продольных волн при насыщенности пород жидкостью объясняется меньшей разницей в объемной упругости твердой фазы породы и жидкости по сравнению с объемной упругостью твердой фазы и газа. Скорость ультразвуковых колебаний зависит от ориентировки систем трещин, различия могут быть в 1,5 раза и более. В трещиноватых доломитах девонского возраста в Белоруссии скорость по различным направлениям изменяется от 2,6 до 5,5 км/с. Плотные доломиты карбона на Вуктыльском газоконденсатном месторождении характеризуются максимальным диапазоном изменения скорости — от 6,8 в слабо нарушенных зонах до 2 км/с в зонах повышенной трешиноватости. Такое различие скоростей в породах одинакового литологического состава при сходной и в целом низкой пористости 1-3% обусловлено неодинаковой густотой трещин и значительными колебаниями их раскрытости. Нетрадиционные коллекторы К породам, роль которых в нефтегазоносности пока еще невелика по сравнению с вышеописанными, относятся толщи, сложенные глинистыми, кремнистыми, вулканогенными, интрузивными, метаморфическими породами и др. Их можно разделить на две группы. В одних нефтегазоносность обычно сингенетична, в других она связана с приходом углеводородов из соседних толщ. В глинистых породах природные резервуары (участки с повышенной пористостью и проницаемостью разнообразной формы) возникают в них в процессе катагенеза. Само возникновение пустот связано с генерацией нефтяных и газовых углеводородов и перестройкой структурно-текстурных особенностей минеральной матрицы породы. Одним из характерных примеров является тол-ша глин баженовской свиты в Западной Сибири. От подстилающих и перекрывающих пород отложения баженовской свиты отличаются повышенным содержанием органического вещества (от 5 до 20% и более) и повышенным содержанием кремнезема. Породы обладают пониженной плотностью (2,23-2,4 г/см3) по сравнению с ниже- и вышележащими толщами. По мнению Т.Т. Клу-бовой, в седиментогенезе происходило образование микроблоков, покрытых пленкой сорбированного органического вещества. Колломорфный кремнезем, обволакивая агрегаты глинистых ми- нералов, создает на их поверхности сложные комплексы с участием органического вещества и кремнезема (возникают так называемые кремнеорганические «рубашки»). Процессы трансформации глинистых минералов и выделения связанной воды приводят к образованию мелких послойных трещин. На определенной глубине зон возникают разуплотнения. Какие-то участки породы вследствие роста внутреннего давления пронизываются системой трещин вдоль поверхности «рубашек». При вскрытии пород баженовской свиты, как правило, отмечаются разуплотнение и аномально высокое пластовое давление. Об уменьшении плотности пород баженовской свиты свидетельствует проведенный М.К. Калинко эксперимент, при котором образец из скважины на Чупальской площади в Западной Сибири подвергался нагреванию до 180°С при давлении 25 МПа в течение 20 суток. До нагревания пористость породы составляла 1,88%, после нагревания увеличилась до 2,71%, доля крупных пор размером более 10 мкм возросла с 6 до 11%. В результате возникают зоны с повышенными коллекторски-ми свойствами (природные резервуары), ограниченные со всех сторон менее измененными и проницаемыми породами. Зачастую эти участки никак не связаны со структурно-тектоническими особенностями региона. Так, видимо, образовались резервуары в баженовской карбонатно-кремнисто-глинистой толще верхней юры в Западной Сибири (Салымское месторождение и др.). Сходным образом могли формироваться коллекторы в майкопской глинистой серии Ставрополья (Журавское месторождение и др.). Можно сделать вывод о том, что в этих коллекторах совпадает во времени формирование коллекторских свойств и генерация нефтяных углеводородов. Повышению растресканности породы способствуют и некоторые тектонические процессы. При отборе нефти из таких пород трещины смыкаются, таким образом, баже-ниты и другие сходные породы являются коллекторами как бы «одноразового использования». В них нельзя закачать газ или нефть, как это делают при строительстве подземных хранилищ в других типах пород. По-другому протекают процессы в кремнистых толщах биогенного происхождения. На первых этапах осадкообразования и начальных этапов диагенеза формируется «ажурная» органогенная структура из раковинок кремнестроящих организмов. В дальнейшем преобразование органогенной структуры тесно связано с преобразованием аморфных форм кремнезема (опал) в кристаллические формы. При переходе опала А в опал КТ появляется глобулярная микротекстура и формируется межглобулярный тип коллектора. При повышенном содержании сапропелевого ОВ и повышенной каталитической роли поверхностно-активного крем- незема начинаются процессы генерации углеводородов. Коллекторы для них уже подготовлены в этих же толщах, свойства их высоки (пористость достигает 40%). Нефти в биогенно-кремнистых толщах считаются нефтями раннего созревания. При дальнейшем усилении катагенеза происходят обезвоживание, переход кремнезема в другие минеральные формы — халцедон, а затем кварц. В породах развивается трещиноватость, связанная система трещин способствует образованию резервуара пластового или массивного типа с коллектором трещинного типа. На шельфе Калифорнии находится несколько месторождений, где кремнистые породы формации Монтерей миоцена промышленно нефтеносны. Самым крупным является месторождение Пойнт-Аргуэльо. На Сахалине в таких толщах также открыто два месторождения. Сходным образом возникают резервуары в кремнисто-глинисто-карбонатных богатых ОВ так называемых доманикоидных толщах. Коллекторы в породах магматического и метаморфического происхождения известны давно. В частности, нефть обнаружена в вулканитах, во вторично измененных пористых лавах и туфах в Мексике, Японии и в других местах. Нефть и газ в туфах, лавах и других разностях связаны с пустотами, которые образовались при выходе газа из лавового метериала или со вторичным выщелачиванием. Нефтеносность этих пород всегда вторична. В вулканических породах в Западном Азербайджане открыто месторождение Мурадханлы. Залежи нефти в породах вулканогенного комплекса эоценового возраста открыты в Восточной Грузии. Известны скопления нефти в метаморфизованных породах фундамента в Алжире, в измененных серпентинитах на Кубе и т.д. Притоки нефти получены из коры выветривания гранитно-метаморфических пород, залегающих в ядрах мезозойских поднятий в Шаимском районе Западной Сибири. На площади Оймаша на Южном Мангышлаке получена нефть из зоны вторично измененных гранитов. Однако подлинный бум вызвало открытие нефти в гранито-гнейсовых породах на шельфе Вьетнама (месторождение Белый Тигр и др.). Эти породы участвуют в строении месторождений, массивы их облекаются третичными осадочными породами, гранитные тела внедряются в осадочные породы. Возникновение коллекторских свойств в них связано с метасоматозом и выщелачиванием в результате гидротермальной деятельности, с явлениями контракции (усадкой) при остывании, с дроблением по зонам тектонических нарушений. В результате действия растворов, цео-литизации, выщелачивания полевых шпатов в породах образуются крупные каверны. В результате воздействия перечисленных процессов возникли субгоризонтальная и субвертикальная зональности в распределении проницаемых участков и сложились три типа пустотности: трещинная, трешинно-каверновая и поро-вая. Основной объем пустот в магматическом коллекторе принадлежит микротрещинам и микрокавернам. Основное пустотное пространство тектонического происхождения связано с трещино-ватостью, катаклазированием и милонитизацией, в результате чего породы раздроблены в щебенку. Контракпионная усадка при остывании привела к созданию контракционной пустотности. Пористость пород в большинстве случаев не превышает 10-11%. Проницаемость матрицы невысока, но в результате развития кавернозности и трешиноватости в целом проницаемость достигает сотен миллидарси. Зоны улучшенных коллекторов обеспечивают притоки нефти в сотни тонн. В качестве газосодержащих выделяются многолетнемерзлые породы. Пустоты разного генезиса, образовавшиеся в них, могут быть заполнены газом, льдом и незамерзшей водой. При определенных условиях (повышение давления) образуются соединения газа с водой — газогидраты. Выбросы газа из этих толщ могут отличаться высокой интенсивностью и большими дебитами (в основном не столь длительными). Залежи в этих коллекторах располагаются на небольших глубинах, в некоторых случаях они могут быть использованы для местных нужд. Учитывая необходимость сопоставления основных параметров двух ведущих групп коллекторов — обломочных (гранулярных) и карбонатных, — авторы предлагают общую классификацию этих коллекторов (табл. 6.5). Она основана на сопоставлении исходных классификаций, в ней учтены как структурные признаки породы, так отчасти и их состав. Выделение классов производится в основном по величине открытой пористости, при этом ее границы, а также проницаемость в классах очень широкие (соответственно 10-20%, 100-1000 мД). Этот недостаток может быть ликвидирован введением подклассов в зависимости от развития конкретных разностей пород в том или ином районе со свойственными им вещественно-структурными характеристиками и параметрами. Например, в классе 2 можно выделять подкласс 2а с хорошо отсортированными малоцементными песчаниками и 26 — с песчаниками, содержащими повышенное количество цемента и соответственно со сниженной емкостью и особенно проницаемостью. В классе 4 слабо измененные пелитоморфные и мелкозернистые известняки имеют удовлетворительную емкость, но низкую проницаемость. Сюда же могут быть отнесены комковатые выщелоченные известняки или строматолитовые, обладающие повышенными свойствами. Укрупненные классы полезны для выявления общих тенденций изменения свойств на значительных площадях и частях разреза.
Date: 2015-04-23; view: 3356; Нарушение авторских прав |