Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Классификация терригенных коллекторов
Вопрос классификации коллекторов имеет большое практическое значение при разведке месторождений. Поскольку факторов, определяющих коллекторские свойства, слишком много, создать удовлетворительную классификацию очень трудно. Почти все существующие классификации достаточно формальны. Группы и классы коллекторов выделяются в них в основном по величинам пористости и проницаемости. Но для оценки качества коллекторов пород совершенно необходимой является и литоло-гическая характеристика. В общем виде породы-коллекторы подразделяются на промышленные нефтеносные, из которых возможно получение достаточных по величине притоков, и непромышленные, из которых получение таких притоков на данном этапе невозможно. Для газа в связи с его подвижностью категория промышленных коллекторов расширяется. Основная масса терригенных коллекторов характеризуется межзерновым (поровым) пространством — это межзерновые или гранулярные коллекторы. Однако среди терригенных пород встречаются и коллекторы со смешанным характером пустотного пространства. Выделяются трещинно-поровые и даже каверноз-но-поровые разности (в том случае, если часть зерен сравнительно легко выщелачивается). Одна из первых классификаций в нашей стране была создана П.П. Авдусиным и М.А. Цветковой. В качестве основного критерия была предложена величина эффективной пористости. Всего было выделено пять классов: А — с эффективной пористостью более 20%; В - 15-20%; С - 10-15%; D - 5-10%; Е - менее 5%. Каждый из классов разделяется по степени сложности строения порового пространства, находящей отражение в гидравлической характеристике Ф. По своей величине эта характеристика равна отношению периметра Р эквивалентной (воображаемой) поры, равной по площади сумме площадей всех пор в данном сечении, к сумме периметров этих пор Σp. Тогда Ф = Р / Σр. Периметр пор, заполненных окрашенной смолой (бакелитом), можно подсчитать на фотографии при помощи курвиметра, а планиметром (специальной сеточкой) — суммарную площадь пор. По таблице можно найти длину окружности (периметр Р) круга, по площади равного суммарной площади пор. По величинам Ф коллекторы подразделяется на три группы: 1 — Ф > 0,25, хорошо проницаемые коллекторы, допускающие значительные скорости фильтрации; 2 — Ф = 0,1-0,25, среднепроницаемые коллекторы, со средней скоростью фильтрации; 3 — Ф < 0,1, слабо проницаемые коллекторы с незначительной скоростью фильтрации. Чем более изометричные очертания у сечений поровых каналов, тем
ближе значение гидравлической характеристики Ф приближается к 1. П.П. Авдусин и М.А. Цветкова выделили классы без указания типов пород; в классификации также не приводятся величины проницаемости. В настоящее время наиболее широко применяется классификация А.А. Ханина (ВНИИГаз). Анализ большого фактического материала позволил А.А. Ханину установить зависимость между величинами полезной емкости и проницаемости для отдельных групп коллекторов, выделяемых по гранулометрическому составу (среднезернистые, мелкозернистые песчаники, алевролиты с преобладанием крупно- и мелкоалевритовой фракции). На основе анализа построения кривых было выделено шесть классов коллекторов (I, II, III, IV, V, VI) с проницаемостью соответственно свыше 1000 мД, 1000-500, 500-100, 100-10, 10-1 мД и менее. Каждому типу печано-алевритовых пород в пределах того или иного класса
соответствует своя величина эффективной пористости. Породы, относящиеся к VI классу с проницаемостью менее 1 мД, в естественных условиях обычно содержат 90% и более остаточной воды и не являются коллекторами промышленного значения. С учетом гранулометрического состава пород классификация терригенных коллекторов, по А.А. Ханину, представлена в табл. 6.2. В рамках одной классификации трудно учесть все свойства. Можно идти по пути создания особых классификаций для отдельных типов пород. 6.6. КАРБОНАТНЫЕ КОЛЛЕКТОРЫ Карбонатные породы как коллекторы нефти и газа уверенно конкурируют с терригенными образованиями. По различным данным, от 50 до 60% современных мировых запасов УВ приурочено к карбонатным образованиям. Среди них выделяются наилучшие по качеству коллекторы - карбонатные породы рифовых сооружений. Добыча нефти и газа, большая по объему, производится из известняков и доломитов, в том числе из палеозоя и докембрия; наиболее крупные месторождения открыты в мезозойских и палеозойских породах, прежде всего в странах Ближнего Востока. Крупные скопления в рифовых сооружениях мезозойского возраста открыты в бассейне Мексиканского залива (Золотой пояс, Кампече и др.). Из рифовых известняков были получены и рекордные дебиты (десятки тысяч тонн в сутки). Можно отметить некоторую связь между развитием карбонатных коллекторов и усилением карбонатонакопления в геологической истории, что связано с обшей цикличностью геотектонического развития и периодичностью осадкообразования. Карбонатные коллекторы характеризуются специфическими особенностями: крайней невыдержанностью, значительной изменчивостью свойств, что затрудняет их сопоставление. В них относительно легко происходят разнообразные диагенетические и катагенетические изменения. Фациальный облик известняков в большей мере, чем в обломочных породах, влияет на формирование коллекторских свойств. В минеральном отношении карбонатные породы менее разнообразны, чем обломочные, но по структурно-текстурным характеристикам имеют гораздо больше разновидностей. В процессе изучения коллекторских свойств карбонатных толш многими авторами неоднократно подчеркивалась решающая роль генезиса отложений, гидродинамики среды для формирования структуры пустотного пространства, которая может быть более или менее благоприятна для формирования коллекторов и определяет характер последующих преобразований. В целом карбонатные породы легко подвергаются вторичным изменениям. Это связано с их повышенной растворимостью. Особенно велико влияние вторичных преобразований в породах с первично неоднородной структурой порового пространства (орга-ногенно-обломочные разности). По характеру постседиментаци-онных преобразований карбонатные породы отличаются от тер-ригенных, прежде всего это касается уплотнения. Остатки биогермов с самого начала представляют практически твердые образования, и далее уплотнение идет уже медленно. Карбонатный ил также может быстро литифицироваться, при этом в нем возникают своеобразные фенестровые пустоты за счет выделения пузырьков газа. Мелкообломочные, комковато-водорослевые карбонатные осадки также быстро литифицируются. Пористость несколько сокращается, но вместе с тем значительный объем порового пространства «консервируется». В карбонатных породах отмечаются все виды пустот. В зависимости от времени возникновения они могут быть первичными (седиментационными и диагенетическими) и вторичными (пост-диагенетическими). В органогенных карбонатных породах к первичным относятся пустоты внутрираковинные, в том числе внутри рифовых построек (в широком смысле — внутриформенные), а также межраковинные. Некоторые карбонатные породы могут быть хемогенного или биохемогенного происхождения, они образуют резервуары пластового типа. К ним относятся прежде всего оолитовые, а также известняки с меж- или внутриоолитовой пус-тотностью. Слоистым или массивным известнякам свойственны пелитоморфные или скрытокристаллические, а также кристаллические структуры. В кристаллических, особенно в доломитизиро-ванных, породах развита межкристаллическая (межзерновая) пористость. Карбонатные породы в большей мере, чем другие, подвержены вторичным преобразованиям (перекристаллизация, выщелачивание, стилолитообразование и др.), которые полностью меняют их физические свойства, а иногда и состав (процессы доломитизации и раздоломичивания). В этом состоит сложность выделения природных резервуаров, так как одна и та же порода в одних условиях может рассматриваться как коллектор с очень высокими свойствами, а в других, если нет трещин, может являться покрышкой. Созданию вторичных пустот способствуют процессы растворения (выщелачивания), перекристаллизации, в основном доломитизации и раздоломичивания или стилолитизации. Те или иные процессы сказываются по-разному в зависимости от генетического типа породы. Перерывы в осадконакоплении, имеющие региональное значение, играют большую роль при формировании зон высокоем- ких коллекторов. Под поверхностью размывов и несогласий в массивах карбонатных пород можно встретить закарстованные зоны, связанные с выветриванием и выщелачиванием. В пределах нефтяных месторождений к этим зонам приурочены высокопродуктивные горизонты. Вдоль трещиноватых зон растворение происходит до больших глубин, в Камском Приуралье оно отмечается на глубинах до 1 км. В рифах выделяются «ситчатые» обычно выщелоченные известняки с пористостью (пустотностью) до 60%, сложенные кораллами, мшанками, «губчатые» крупнодетритовые известняки (с пористостью 40-45%), часто кавернозные и малопористые известняки с отдельными порами и кавернами, чаще всего выщелачивания. Все разновидности известняков выделяются внутри рифового массива. Ситчатые и губчатые разности группируются в зоны повышенной пористости. Образование ее в этих зонах часто связано с выведением пород на поверхность и выветриванием. Дебиты скважин в разных частях рифов резко различаются. Среди явлений выщелачивания следует отметить некоторые особые случаи, имеющие локальное значение, но проявляющиеся иногда в широких масштабах. Таким примером может служить хемобиогенная коррозия, проявляющаяся при развитии микрофлоры на ВНК, которая создает кислую среду, повышает ее агрессивность и способствует растворению карбонатов. Другим примером является развитие карста под влиянием углекислоты, образующейся при разрушении нефтяной залежи. В обоих случаях переотложение растворенного карбоната кальция ниже подошвы залежи приводит к изоляции последней от остальной части пласта. Особую проблему представляет развитие глубинного карста (гипокарста), связанного с различными процессами, при которых в глубинных зонах осадочного чехла происходит хотя бы кратковременное раскрытие трещин, в результате чего увеличивается поступление СОг с глубин, и, как следствие, развивается глубинный карст с образованием коллекторов. На развитие гипокарста, очевидно, влияет и достижение состояния неустойчивости кальцита при погружении (см. гл. 5). В пределах основных групп пород выделяются определенные структурные разности пород. Органогенно-обломочные известняки, как правило, всегда сцементированы и обладают меньшими емкостными возможностями по сравнению с биоморфными разностями. Пустоты (поры) органогенно-обломочных пород называются межагрегатными, так как внутренняя структура составных частей этих пород различна. В хемогенных породах пустоты различаются по особенностям структуры. В оолитовых породах различается пористое межоолитовое пространство, трещины сокращения между и внутри кон- центров оолитов и, наконец, отрицательно-оолитовые пустоты, образующиеся при выщелачивании оолитов (рис. 6.18). В кристаллических (зернистых) известняках структура поро-вого пространства (в случае растворения) межзерновая и кавернозная. Пелитоморфные известняки обычно обладают повышенной трещиноватостью по сравнению с другими типами карбонатных пород. В них же наиболее часто развиты стилолитовые швы. Обычно видно все переходы от самых ранних стадий - зародышей и сутурных швов к типичным стилолитам. Образование сти-лолитов связано с неравномерным растворением под давлением. Глинистая корочка на поверхности стилолитовых швов представляет нерастворимый остаток породы. Часто горизонты развития стилолитов являются наиболее продуктивными в разрезе. Они проницаемы, за счет вымывания глинистых корочек может образоваться зияющая пустота (рис. 6. 19). Обломочные карбонатные породы в структурном отношении отличаются от перечисленных групп. В принципе они сходны с
обычными кластическими породами, но по характеру преобразований тяготеют к известнякам. Из числа вторичных процессов в карбонатных породах важнейшее значение имеют цементация, выщелачивание, кальцитазация и сульфатизация. Цементация может начаться очень рано и происходить быстро, как это хорошо видно на примере бичроков. Кальцитовый цемент выкристаллизовывается за счет выпаривания морской воды, заливающей пляж, и частичного растворения нестойких минералов. Пляжный карбонатный песок может отвердевать за несколько дней. Подобная почти мгновенная лити-фикация происходила и в прошлые времена. Дальнейшая судьба оставшихся в каркасе такого «литификата» пустот может быть различна. При перекристаллизации происходит существенное изменение структуры и текстуры пород. В целом этот процесс направлен в сторону увеличения размера кристаллов. Если при перекристаллизации часть вещества выносится, пористость возрастает. Наибольшей вторичной пористостью обладают неравномерно перекристаллизованные породы. Рост крупных кристаллов способствует образованию микротрещин. Наиболее эффективное влияние на формирование вторичной пустотности оказывает выщелачивание и метасоматоз (в основ ном доломитизация). Растворение при выщелачивании проявляется по-разному в зависимости от большей или меньшей дисперсности слагающих породу частиц. Тонкодисперсные компоненты сильнее подвержены этому процессу. Растворимость также зависит от состава минералов и вод: арагонит растворяется лучше, чем кальцит, сульфатные воды более активно растворяют доломит и т.д. Анализ изменения фильтрационно-емкостных параметров, определяемых в том числе выщелачиванием, устанавливает их весьма отчетливую связь со структурно-генетическими типами пород. Примером этого является крупный рифовый массив раннепермского и каменноугольного возраста Карачаганакского месторождения, расположенного в северной бортовой части Прикаспийской впадины.
Месторождение Карачаганак находится под соленосной кун-гурской толщей на глубинах от 3750 до 5400 м. В продуктивной толще каменноугольно-раннепермского возраста преимущественно развиты биогермные и биоморфно-детритовые известняки, в меньшей степени — хемогенные и органогенно-обломоч-ные разности, присутствуют доломиты как продукты замещения известняков. По фациальной принадлежности различаются породы ядра рифового массива, склоновых фаций, внутририфовой лагуны и обломочного шлейфа. Это обычная схема строения всех рифовых массивов. Наилучшими коллекторскими свойствами обладают породы ядра (особенно в выщелоченном состоянии), а также отложения склоновой фации, залегающие на глубине 4,8-4,9 км. Для них характерны значения пористости 10-23% и проницаемости 100-500 мД. Такие высокие значения на больших глубинах определяются тем, что широко развитые процессы растворения привели к формированию линзовидных крупнопористых зон с унаследованной кавернозностью (см. рис. 6.11). В меловых отложениях Золотого пояса и зоны Реформа в Мексике рифовые и предрифовые фации, в том числе фация обломочного шлейфа, представляют коллекторы с пористостью от 14 до 26% и проницаемостью в сотни миллидарси. Иной тип карбонатных пород и пустоты в них можно наблюдать в древних толщах Восточной Сибири в Юрубчено-Тахомской зоне нефтенакопления. Здесь в разрезе продуктивных толщ преобладают вторично измененные перекристаллизованные водорослевые, строматолитовые доломиты. В породах широко развиты стилолитовые швы, часто заполненные глинисто-битуминозным веществом. Широко развиты процессы окремнения. Массивы карбонатных пород рифея при выведении на поверхность во время предвендского перерыва подвергались выветриванию и карстообразованию, что привело к развитию кавернозности. Карстовые воронки и другие ниши были заполнены делювиаль- но-пролювиальными образованиями. Массивы нарушены разломами и трещиноватостью. Таким образом, коллекторы обладают сложной структурой пустотного пространства. Из зон повышенной пустотности получены высокие притоки нефти. Доломитизация является одним из ведущих факторов при формировании коллекторов. На образование доломита влияет соотношение в воде магния и кальция и общая величина солености. При более высокой концентрации солей требуется и большее количество растворенного магния. В процессе диагенеза доломит возникает за счет своих предшественников — таких как магнезиальный кальцит. Первичная диагенетическая доломитизация не имеет существенного значения для формирования коллекторских свойств. Метасоматическая доломитизация в катагенезе более важна для преобразования коллекторов. Для доломитообразова-ния необходимо поступление магния. Источники его могут быть различны. При катагенетических процессах в условиях повышенных температур растворы теряют магний, обменивая его на кальций вмещающих пород. На примере Припятского прогиба видно, что между составом рассолов и интенсивностью вторичной доломитизации устанавливается отчетливая зависимость. В тех стратиграфических зонах, где девонские карбонатные породы наиболее сильно доломитизированы, содержание магния в рассолах резко падает, он используется для образования доломита. При метагенетической доломитизации особенно заметно увеличение пористости, так как процесс идет в породе с жестким скелетом, которая трудно поддается уплотнению. Общий объем породы сохраняется, пустотность в ней за счет доломитизации повышается. Обратный процесс раздоломичивания (дедоломитизация) особенно распространен в приповерхностных условиях. Наиболее активно он проходит в разрезах, где доломиты содержат прослои сульфатов. При просачивании вод магний доломитов в растворах соединяется с радикалом SO42- и выносится в виде легко растворимого MgSO4. Происходит увеличение пористости пород. Но перенос сульфатов водами нередко приводит и к противоположным результатам с точки зрения качества коллекторов. Легко растворимый CaSO4 также легко выпадает в осадок и запечатывает поры. Так же может влиять и кальцитизация, которая часто выражается в наращивании регенерационных каемок и сужении порового пространства. Есть и другие специфические геофизические приемы исследования карбонатных коллекторов, в том числе сопоставление данных НГК (дает представление об общей величине пустотности) и БКЗ (величина пустотности, связанной трещинами, в том числе и каверн), а также другие методы.
Заканчивая рассмотрение карбонатных коллекторов, необходимо еще раз подчеркнуть то, что по сравнению с обломочными породами структура их порового пространства чрезвычайно разнообразна. Ненарушенная матрица имеет характеристики, которые определяются прежде всего первичной структурой, кавер-нозность сильно изменяет эти характеристики, а трещиноватость создает как бы две наложенные друг на друга системы пустот. Все это и определяет необходимость особой классификации коллекторов. Такая оценочно-генетическая классификация коллекторов была предложена К.И. Багринцевой (табл. 6.3). Определяющим параметром предлагаемой классификации является проницаемость, предельные значения которой взяты из анализов коллекторских свойств пород различного генезиса и структурных особенностей. Минимальные и максимальные значения оценочных показателей (пористости, газонефтенасыщен-ности и др.) получены из корреляционных зависимостей между проницаемостью, пористостью и остаточной водой. Наиболее характерна связь остаточной водонасыщенности с абсолютной проницаемостью. В породах по мере улучшения фильтрационных свойств количество остаточной воды уменьшается. Пористость может быть различной, при этом даже высокие (более 15%) значения открытой пористости бывают в породах с низкими фильтрационными свойствами. Между открытой пористостью и остаточной водона-сыщенностью связь неопределенная. Низкопористые породы всегда отличаются большим содержанием воды, а высокопористые имеют двойственную характеристику: хорошо проницаемые заключают небольшое количество воды, а плохо проницаемые — значительное (более 50%). В классификационной схеме все коллекторы подразделяются на три большие группы А, Б, В, внутри которых в свою очередь выделяются классы, характеризующиеся разными оценочными параметрами, литологическими и структурными особенностями. Группы А и Б представлены в основном коллекторами порового и кавер-ново-порового типов, В — трещинного и смешанного типов. В породах группы А преобладают первичные пустоты, размеры которых увеличены в процессах последующего выщелачивания. В породах группы Б развиты седиментационные поровые каналы; меньшую роль играют пустоты выщелачивания. Строение пустотного пространства в породах группы А значительно проще, чем в группе Б, а наиболее сложно оно в группе В. Здесь преобладают мелкие извилистые, плохо сообщающиеся каналы. Коллекторы I и II классов в группе А обладают в основном унаследованными высокими фильтрационными и емкостными параметрами. В III, IV и V классы попадают породы обломочно-органоген-
ные и биохемогенные с низкими первичными коллекторскими свойствами. Вторичное минералообразование, перекристаллизация, доломитизация, раздоломичивание, особенно сопровождающиеся выщелачиванием и выносом материала, улучшают их свойства. В VI и VII классах выделены породы таких хемогенных и биохемогенных разностей, петрофизические характеристики которых никогда не достигают высоких значений. Но здесь в большей степени, чем в породах высших классов, проявляется другой фактор — трещиноватость. Тип пустот поровый (для матрицы) и трещинный (в целом для коллектора). Поэтому отдельно даются параметры матрицы, которые в основном низкие, особенно проницаемость, и отдельно параметры трещин, по которым проницаемость значительно выше. Date: 2015-04-23; view: 6435; Нарушение авторских прав |