Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Эволюция представлений о теплоте





 

В прошлом веке господствовала теория флюидов - невесомых и неуничтожимых жидкостей, перетеканием которых объяснялись различные явления природы. Такими флюидами служили теплород (с его помощью объяснялись тепловые явления), электрород, магнитная жидкость, флогистон (им объяснялись явления горения) и т.д. Например, в 1822 г. на базе теории теплорода Фурье разработал математические основы теории теплопроводности.

Последующее развитие науки привело к более глубокому пониманию всех этих явлений. В частности, после открытия закона сохранения энергии стало ясно, что теплота-теплород - это понятие энергетической природы: она способна преобразовываться в работу в эквивалентных количествах. Теория теплорода была отброшена, однако представление о теплоте как о субстрате переноса сохранилось до наших дней.

В ходе становления термодинамики вместо теплорода было развито новое понимание теплоты как хаотического движения микроскопических частиц тела. На этой основе было построено стройное здание молекулярно-кинетической теории. Применительно к газу начальные шаги в этом направлении сделаны Больцманом, Максвеллом, Гиббсом и некоторыми другими авторами. Согласно этим взглядам, теплота представляет собой кинетическую энергию хаотического движения микрочастиц. Для количественного определения кинетического движения были привлечены такие понятия статистической физики, как случайность, вероятность, флуктуация и т.п.; они легли в основу так называемой статистической термодинамики. Кинетическое толкование теплового явления нашло завершающее развитие в квантовой механике.

Наконец, в 1950 г. я предложил новый подход при изучении тепловых явлений, с которого фактически и начиналась общая теория (ОТ) (см. параграфы 15 и 16 гл. XV). Согласно этому подходу, в природе существует некое простое вермическое вещество (термический заряд), которое с качественной и коли чественной стороны однозначно характеризует тепловое явление во всех его проявлениях на любом уровне картины мироздания. Истинно простое вермическое явление подчиняется всем законам ОТ. Например, переход вермического вещества через контрольную поверхность сопровождается совершением работы и изменением энергии системы (первое начало). Количество вермического вещества в отличие от энтропии подчиняется закону сохранения (второе начало). Вермическое явление вследствие наличия универсального взаимодействия испытывает органическую связь со всеми остальными явлениями (третье и четвертое начала). Вермическое вещество способно распространяться (пятое и шестое начала), а также аккумулироваться и экранироваться в системе (седьмое начало) и т.д. [ТРП, стр.402-403].

 


2. Теория теплообмена.

 

Процесс распространения вермического вещества обладает следующей интересной особенностью.

При переносе всех других веществ сопряженная с ними степень свободы отличается от экранированной - вермической, поэтому экранированное тепло мы легко наблюдаем в опыте (например, перенос электрического заряда сопровождается выделением джоулева тепла). В случае же распространения вермического вещества основная и экранированная степени свободы совпадают между собой, их невозможно отличить друг от друга, в результате почти целое столетие потребовалось для того, чтобы расшифровать истинный физический механизм вермического явления. Маскировке этого механизма в решающей степени способствовала количественная сторона обсуждаемой проблемы.

Действительно, некоторое количество вермического вещества на входе в систему совершает работу dQQ (см. параграф 3 гл. XIII и рис. 4, а). На выходе из системы вермическая работа этого вещества равна dQQ’’. Но к нему присоединяется экранированное вермическое вещество, совершающее на пути dx работу dQэQ = dQQ - dQQ’’ (см. формулу (222)). В результате суммарная работа на выходе из системы dQQ’’ + dQQ - dQQ’’ = dQQ. Следовательно, вермическая работа на входе в систему равна вермической работе на выходе.

В терминах теории теплорода вермическая работа представляет собой количество тепла. Таким образом, благодаря тождественности основной степени свободы и экранированной количество тепла на всем пути распространения вермического вещества сохраняется неизменным. Отсюда становится понятным, почему представление о теплоте как о субстрате переноса не наталкивается на противоречия [13, с.164; 18, с.214; 21, с.269).

На основе традиционного понимания теплоты в свое время были развиты известные теории теплообмена, классической термодинамики Клаузиуса, термодинамики необратимых процессов Онзагера и т.д. Нетрудно показать, что указанные теории с их понятиями, законами, уравнениями и коэффициентами непосредственно вытекают из ОТ в качестве частных случаев. Более общая точка зрения ОТ позволяет детально расшифровать физический смысл и дать оценку всем этим понятиям. Некоторые из них остаются в неприкосновенности, другие получают новое толкование, а от иных приходится и отказаться. Одновременно удается лучше осмыслить круг понятий самой ОТ и ее место в системе научных знаний.

Например, теория теплообмена базируется на трех основных законах:

теплопроводности Фурье

JQ = - LQ(dT/dx) (316)

теплоотдачи на поверхности тела Ньютона

JQ = - aQ dT (317)

излучения абсолютно черного тела Стефана – Больцмана

JQ = sQ T4 (318)

где LQ - коэффициент теплопроводности, то есть проводимость по отношению к вермической работе, или теплоте; aQ -коэффициент теплоотдачи; sQ - постоянная Стефана - Больцмана.

В теории теплопроводности используется также дифференциальное уравнение теплопроводности Фурье

¶T/¶ t = DQ2T/¶x2) (319)

где DQ - диффузивность по отношению к теплоте, или коэффициент температуропроводности.

С помощью этих законов выводятся многочисленные уравнения переноса теплоты, используемые на практике. Все они непосредственно вытекают из ОТ. Например, уравнение (316) есть частный случай выражений (110) и (124), уравнение (317) получается из формул (109) и (114), уравнение (318) выведено Зоммерфельдом в книге [45], уравнение (319) есть частный случай формул (158) и (159). Поток теплоты JQ равен потоку вермического вещества JQ, умноженному на абсолютную температуру Т. Аналогично связаны между собой коэффициенты LQ, aQ и sQ с соответствующими коэффициентами LQ, aQ и sQ для вермического вещества. Исключение составляет лишь диффузивность, которая для теплоты и вермического вещества имеет одно и то же значение, то есть DQ = DQ.

В отличие от традиционной теории теплообмена общая теория рассматривает системы со многими степенями свободы. Благодаря их взаимному влиянию иногда удается в десятки и сотни раз увеличить, например, коэффициент теплоотдачи [21, с.199] [ТРП, стр.403-405].

 

Date: 2015-05-09; view: 949; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию