Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Механизм возникновения спектра





Давайте рассмотрим, что такое « спектр », а также, почему и как он возникает.

В физических экспериментах спектры обычно получают, пропуская «свет» либо сквозь призму, либо сквозь узкие щели или крошечные отверстия в плотном материале. На основании способа получения спектры бывают призматические и интерференционные.

Спектр – это видимый на экране ряд из шести цветов, плавно переходящих один в другой. Спектр образован «видимыми» фотонами различного качества.

Как уже говорилось, световой луч – это путь, проходимый «видимыми» фотонами (элементарными частицами, в более широком смысле) в среде. Иначе можно сказать, что это путь, «прожигаемый» «видимыми» фотонами (элементарными частицами). Причем, фотоны (элементарные частицы) в составе светового луча, испускаемого источником света, движутся все вместе. Это означает, что «видимые» фотоны разного качества не движутся разными путями. Тогда почему на экране мы видим полосы разного цвета? Потому что происходит следующее.

Вначале рассмотрим механизм «разложения» «света» при помощи стеклянной треугольной призмы. И. Ньютон использовал в своих опытах именно такие призмы. Треугольная призма имеет три вершины и три основания. Призму в опыте располагали одной из вершин вниз, а противолежащим ей основанием вверх. Как мы помним, фиолетовая полоса в спектре лежала на экране ближе основанию, а красная – ближе к вершине. Основание призмы содержит больше химических элементов, чем вершина. Поэтому суммарное гравитационное поле у основания призмы больше, чем у ее вершины. Именно этот факт, наряду с ограничением количества света, падающего на призму, становится причиной появления на экране радужных полос – спектра. Объяснение достаточно простое. Мы уже приводили его ранее. Повторим в общих чертах.

Химические элементы стекла, из которого состоит призма – кремний, кислород и примеси металлов. Кремний и примеси металлов характеризуются наибольшими Полями Притяжения по сравнению с кислородом.

Химические элементы стекла призмы создают Силу Притяжения в фотонах, входящих в призму. Соответственно, суммарная Сила Притяжения к основанию призмы оказывается больше Силы Притяжения к ее вершине, так как общее число элементов в основании больше. Сила Притяжения со стороны вершины невелика. Она ослабляет действие Силы Притяжения основания, но столь незначительно, что почти незаметно.

У каждого фотона, входящего в вещество призмы, есть Сила Инерции, двигающая его вперед. Причем, как уже говорилось в теории цвета, существуют фотоны трех основных цветов – синего, желтого и красного – с разной величиной количества разрушаемого эфира. При движении в составе общего потока у видимых фотонов разного качества оказывается разная по величине Сила Инерции. Сила Притяжения и Сила Инерции взаимодействуют в каждом фотоне в соответствии с Правилом Параллелограмма. Равнодействующая Сила оказывается диагональю параллелограмма, выстроенного на векторах обеих Сил как на сторонах. В итоге каждый фотон отклоняется на строго определенный угол в соответствии с направлением вектора равнодействующей Силы. И результат этого отклонения мы можем наблюдать на экране в виде спектра, где фотоны с разной Силой Инерции отклоняются от первоначальной траектории на свой собственный угол.

Мы можем наблюдать разделение светового луча на спектр только потому, что в призму входит очень небольшое количество «видимых» фотонов. Помните, в опыте мы ограничиваем количество «света», проделывая отверстие в плотной шторе? Если бы призму освещал дневной уличный свет, мы бы не увидели на экране спектр. Объясняется это тем, что яркость суммарного пропускаемого и отражаемого света при дневном освещении была бы столь велика, что превышала бы порог различения для нашего зрительного анализатора. Такой яркий свет мы характеризуем как « белый ».

Теперь давайте разберем, как возникают спектры в дифракционной и интерференционной картинках.

Вот описание интерференционной картинки. «Если использовать белый свет, представляющий собой непрерывный набор длин волн от 0,39 мкм (фиолетовая граница спектра) до 0,75 мкм (красная граница спектра), то интерференционные максимумы для каждой длины волны будут…смещены друг относительно друга и иметь вид радужных полос. Только для m=0 (m – это максимум, примечание авт.) максимумы всех длин волн совпадают, и в середине экрана будет наблюдаться белая полоса, по обе стороны которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т.д. (ближе к белой полосе будут находиться зоны фиолетового цвета, дальше – зоны красного цвета). (Т.И.Трофимова, «Курс физики», стр. 279).


А вот описание дифракции Фраунгофера на одной щели. «При освещении щели белым светом центральный максимум имеет вид белой полоски; он общий для всех длин волн (при φ = 0 разность хода равна нулю для всех λ). Боковые максимумы радужно окрашены, так как условие максимума при любых m различно для разных λ. Таким образом, справа и слева от центрального максимума наблюдаются максимумы первого…, второго… и других порядков, обращенные фиолетовым краем к центру дифракционной картины. Однако они настолько расплывчаты, что отчетливого разделения различных длин волн с помощью дифракции на одной щели получить невозможно» (Т.И.Трофимова, «Курс физики», стр. 291).

В стеклянной призме проводящей средой для «видимых» фотонов были элементы кислорода, входящие в состав стекла. А в отверстиях и щелях, проделанных в плотном материале – главным образом, азот воздуха. Однако причина возникновения и призматического спектра, и дифракционно-интерференционного одна и та же – гравитационные поля химических элементов. В призме это притяжение со стороны преобладающего числа элементов в основании. А в отверстии или щели это притяжение со стороны химических воздуха, одновременно с ослаблением потока света за счет притяжения фотонов элемент плотного материала, в котором те проделаны.

Любая дифракционно-интерференционая картина – это проекция на экран химических элементов, заполняющих щели или отверстие. Темные участки соответствуют расположению химических элементов. Спектр мы можем наблюдать только вследствие того, что узкая щель (или отверстие) пропускает довольно мало видимых фотонов, значительная часть которых к тому же поглощается элементами материала, в котором проделана щель (или отверстие). Именно ослабление светового потока дает нам возможность заметить, как химические элементы щели (отверстия) отклоняют своим притяжением движущиеся фотоны. Фотоны движет Сила Инерции. Конкуренция Силы Инерции и Силы Притяжения со стороны каждого химического элемента в щели или отверстии приводит к возникновению равнодействующей Силы. Вектор этой Силы укажет направление, в котором станут двигаться фотоны. Так и возникают радужные максимумы на экране.

 

 







Date: 2015-05-09; view: 855; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию