Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Интерференция и дифракция света
1. Когерентными называются волны, которые имеют … А.одинаковые частоты Б.одинаковую поляризованность В.одинаковые начальные фазы Г.постоянную разность фаз Д.одинаковые амплитуды 1. только А 2. А, Б. 3. А, Б, Д 4. А, Б, Г 2. Одинаково направленные колебания с указанными периодами будут когерентны в случае … 1. Т 1 = 2 с; Т 2 = 4 с; 2. Т 1 = 2 с; Т 2 = 2 с; 3. Т 1 = 2 с; Т 2 = 4 с; 4. Т 1 = 2 с; Т 2 = 2 с; 3. Когерентные волны с фазами и и разностью хода при наложении усиливаются, если (k = 0, 1, 2,…) … 1. 2. π(2 k +1) 3. = (2 k +1) 4. 4. Когерентные волны с фазами 1 и 2 и разностью хода ∆ при наложении максимально усиливаются, если … 1. 2. 3. 4. 5. Когерентные волны с начальными фазами и при наложении максимально усиливаются, если (k = 0, 1, 2…) … 1. 2. 3. 4. 6. Оптическая разность хода двух волн монохроматического света 0,4 λ. Разность фаз этих волн равна … 1. 0,4π 2. 0,6π 3. 0,8π 4. 0,15π 7. Оптическая разность хода двух волн монохроматического света 0,5 λ. Разность фаз этих волн равна … 1. 0,3π 2. 0,6π 3. 0,7π 4. 1,0π 8. Оптическая разность хода двух волн монохроматического света 0,6 λ. Разность фаз этих волн равна … 1. 0,3π 2. 0,6π 3. 0,7π 4. 1,2π 9. При интерференции когерентных лучей максимальное ослабление света наблюдается при выполнении условия … ( – оптическая разность хода, – разность фаз). 1. = 0 2. 3. = 4. 10. При интерференции когерентных лучей максимальное ослабление света наблюдается при выполнении условия ( – оптическая разность хода, – разность фаз) … 1. 2. 3. 4. 11. При интерференции двух одинаково поляризованных волн с одинаковыми амплитудами и разностью фаз, равной , амплитуда результирующей волны равна … 1. 2А 2. 4А 3. 3А 4. 0 12. При интерференции двух одинаково поляризованных волн с одинаковыми амплитудами и разностью фаз, равной 2 , амплитуда результирующей волны равна … 1. 2А 2. А 3. 0 4. 4А 13. При интерференции двух одинаково поляризованных волн с одинаковыми амплитудами А и разностью фаз амплитуда результирующей волны равна … 1. 2 А 2. 3. А 4. 0 14. Если на пути одного из двух когерентных лучей поставить синюю тонкую пластинку, а на пути второго – красную, то интерференционная картина будет представлять чередование полос … 1. красных, синих 2. черных, красных, синих 3. фиолетовых, черных 4. интерференционной картины не будет 15. На экране наблюдается интерференционная картина от двух когерентных источников света (λ = 0,8 мкм). Когда на пути одного из лучей перпендикулярно ему поместили тонкую стеклянную пластинку (n = 1,5), интерференционная картинка изменилась на противоположную (максимумы сменились на минимумы). Толщина пластинки равна … мкм. 1. 0,8 2. 1,2 3. 1,6 4. 0,6 16. На пути световой волны, идущей в воздухе, поставили стеклянную пластинку (n = 1,5)толщиной 1,5 мм. Если волна падает на пластинку нормально, то ее оптическая длина … 1. увеличится на 2,25 мм 2. уменьшится на 2,25 мм 3. уменьшится на 0,75 мм 4. увеличится на 0,75 мм 17. Интерференционный минимум второго порядка для фиолетовых лучей ( = 400 нм) возникает при разности хода … нм. 1. 1000 2. 1200 3. 800 4. 500 18. Интерференционный минимум второго порядка для фиолетовых лучей (400 нм) возникает при разности фаз … . 1. 2 2. 3 3. 4 4. 5 19. Интерференционный максимум третьего порядка для фиолетовых лучей (400 нм) возникает при разности фаз … . 1. 2 2. 5 3. 4 4. 6 20. При интерференции когерентных лучей с длиной волны 400 нм минимум третьего порядка возникает при разности хода … нм. 1. 400 2. 800 3. 1400 4. 1000 21. На стеклянную пластинку толщины d 1 и показателя преломления n 1 налит тонкий слой жидкости толщиной d 2 и показателем преломления n 2 (n 1 < n 2). На жидкость нормально падает свет с длиной волны λ. Оптическая разность хода интерферирующих волн равна … 1. 2 d 2 n 2 2. 2 d 2 n 2 + 3. 2 d 2 n 2 – 4. 2 d 1 n 1 22. На стеклянную пластинку толщиной d 1 и с показателем преломления n1 налит тонкий слой жидкости толщиной d 2 и с показателем преломления n 2, причем n 1 > n 2. На жидкость нормально падает свет с длиной волны λ. Оптическая разность хода интерферирующих лучей равна … 1. 2 d 1 n 1. 2. 2 d 2 n 2. 3. 2 d (n 1– n 2) +λ/2 4. 2 d 1 n 1+λ/2 23. Тонкая пленка с показателем преломления и толщиной d помещена между двумя средами с показателями преломления и ( > > ). Оптическая разность хода интерферирующих лучей с длиной волны в отраженном свете равна … 1. 2dn 2. 3. 4. 24. Свет с длиной волны 600 нм падает нормально на пластинку (n 1=1,5), на которую нанесен слой жидкости (n 2 = 1,6) толщиной 1 мкм. Разность хода отраженных интерферирующих лучей равна … мкм. 1.1,6 2. 2,9 3. 3,5 4. 5,2 25. Плоскопараллельная пластинка из стекла (n = 1,5) толщиной 1,2 мкм помещена между двумя средами с показателями преломления n и n (n < n < n ). Если свет с длиной волны 0,6 мкм падает нормально на пластинку, то оптическая разность хода в отраженном свете равна … мкм. 1. 3,3 2. 3,9 3. 3,6 4. 4,2 26. На объектив (n 1 = 1,5) нанесена тонкая пленка (n 2 = 1,2) толщиной d (просветляющая пленка). Разность хода интерферирующих волн в отражённом свете равна … 1. 2 dn 1+ 2. 2 dn 2+ 3. 2 dn 2 4. 2 dn 1 27. На стеклянный объектив с показателем преломления n наносится тонкая пленка вещества с показателем преломления . На объектив падает нормально монохроматический свет с длиной волны λ. Минимальная толщина пленки, при которой интенсивность отраженных лучей минимальна, равна … 1. 2. 3. 4. 28. Для просветления объектива (n 1 = 1,5) на его поверхность наносят тонкую пленку, показатель преломления которой n 2 =1,28. На объектив нормально падает свет с = 0,55 мкм. При какой минимальной толщине пленки отраженные лучи максимально ослаблены … мкм. 1. 0,2 2. 0,3 3. 0,1 4. 0,5 29. На поверхность тонкой прозрачной пленки (n = 1,2) падает под углом 45ºсвет с нм. При какой наименьшей толщине пленки отраженный свет будет максимально ослаблен … нм. 1. 323 2. 623 3. 523 4. 423 30. Свет с длиной волны 500 нм, падает нормально на пластинку (n 1 = 1,5) толщиной 1 см, на которую нанесен слой жидкости (n 2 = 1,3) толщиной 1 мкм. Разность хода интерферирующих лучей в отраженном свете равна … мкм. 1. 2,6 2. 1,3 3. 3,2 4. 0 31. Разность хода лучей, приходящих в точку наблюдения от двух соседних зон Френеля, равна … 1. λ 2. 2λ 3. λ 4. 32. Фазы колебаний, приходящих в точку наблюдения от соседних зон Френеля … 1. совпадают 2. отличаются на 3. отличаются на 4. отличаются на 33. Фазы колебаний, приходящих в точку наблюдения от первой и третьей зон Френеля, отличаются на 1. на 2. на 3. на 4. на 34. На пути луча, идущего в воздухе, поставили диафрагму с круглым отверстием, пропускающим первую зону Френеля. Интенсивность в центре дифракционной картины … 1. увеличилась в 2 раза 2. уменьшилась в 2 раза 3. увеличилась в раз 4. увеличилась в 4 раза 35. На рисунке представлены векторные диаграммы амплитуд результирующего колебания при дифракции света на круглом отверстии. Отверстие оставляет открытым количество зон Френеля, равное 1. 3; 1/2 2. 3; 1 3. 5; 1/3 4. 5; 1/2 36. На рисунке представлены векторные диаграммы амплитуды результирующего колебания при дифракции света на круглом отверстии. Отверстие оставляет открытым количество зон Френеля … 1. 4; ½ 2. 2; 1 3. 5; 1/3 4. 3; ½ 37. На щель падает плоская монохроматическая волна. Из перечисленных ниже условий максимуму интенсивности света в направлении угла φ соответствует утверждение … А. в щели укладывается четное число зон Френеля Б. в щели укладывается нечетное число зон Френеля В. разность хода крайних лучей равна четному числу полуволн Г. разность хода крайних лучей равна нечетному числу полуволн 1. только А 2. только Б 3. А, В 4. Б, Г 38. На щель шириной а = 6λ падает нормально параллельный пучок монохроматического света с длиной волны λ. Синус угла дифракции, под которым наблюдается минимум второго порядка, равен … 1. 0,42 2. 0,33 3. 0,66 4. 0,84 39. На пути источника света к наблюдателю поставили диафрагму с круглым отверстием, пропускающим первые 1,5 зоны Френеля. Интенсивность света в точке наблюдения … 1. уменьшилась в 2 раза 2. уменьшилась в раза 3. увеличилась в 2 раза 4. увеличилась в раза 40. Интенсивность, создаваемая на экране некоторой монохроматической волной в отсутствии преград равна I 0. Если на пути волны поставить преграду с круглым отверстием, открывающим полторы зоны Френеля, то интенсивность в центре дифракционной картины будет равна … 1. 0,5 2. 1,5 3. 2,0 4. 3,5 41. На дифракционную решетку падают красные и фиолетовые лучи. Из перечисленных утверждений А. максимум красного света в спектре любого порядка расположен дальше от нулевого максимума, чем максимум фиолетового Б. максимумы нулевого порядка для красного и фиолетового света не совпадают В. максимумы нулевого порядка для красного и фиолетового света совпадают Г. число «фиолетовых» максимумов не меньше, чем «красных» Правильными являются … 1. А Б В 2. Б В 3. А Б 4. А В Г 42. Если щели дифракционной решетки перекрыть через одну, то в дифракционной картине на экране произойдет изменение … 1. увеличится ширина максимумов 2. уменьшится количество максимумов 3. уменьшится ширина максимумов 4. картина не изменится 43. Половина дифракционной решетки перекрывается с одного края непрозрачной преградой, в результате чего число щелей уменьшается в два раза. При этом в дифракционной картине произойдет изменение … 1. изменяется положение главных максимумов 2. уменьшается ширина максимумов 3. высота центрального максимума уменьшается в 4 раза 4. ничего не изменится 44. При освещении дифракционной решетки светом длиной волны , максимум второго порядка наблюдается под углом 30º. Общее число главных максимумов в дифракционной картине равно … 1. 10 2. 9 3. 7 4. 8 45. Если углу дифракции 30° соответствует максимум четвертого порядка для монохроматического света (λ = 0,5 мкм), то число штрихов на 1 мм дифракционной решетки равно … мм-1. 1. 125 2. 500 3.250 4. 750 46. Дифракционная решетка, содержащая 200 штрихов на мм, дает общее число максимумов ( мкм), равное … 1. 17 2. 15 3. 8 4. 10 47. Дифракционная решетка, содержащая 500 штрихов на 1 мм, дает общее число максимумов ( = 650 нм) равное … 1. 3 2. 7 3. 15 4.10 48. Дифракционная решетка содержит 200 щелей на 1 мм. На решетку падает нормально свет с длиной волны 600 нм. Эта решетка дает число главных максимумов, равное … 1. 17 2. 19 3. 16 4. 9 49. На дифракционную решетку с периодом 12 мкм падает нормально свет с длиной волны 2,5 мкм. Максимальный порядок, наблюдаемый с помощью данной решетки… 1. 10 2. 2 3. 4 4. 5 50. Наименьшее число щелей N, которое должна иметь дифракционная решетка, чтобы разрешить две линии калия ( 1 = 578 нм, 2 = 580 нм) в спектре второго порядка, равно … 1. 1158 2. 580 3. 200 4. 145 51. Угловая дисперсия дифракционной решетки в спектре первого порядка равна рад/м. Если считать углы дифракции малыми, то период решетки равен … мкм. 1. 2 2. 7,5 3. 5 4. 2,5 52. Наименьшая разрешающая способность дифракционной решетки, с помощью которой можно разрешить две линии калия (λ1 = 578 нм и λ2 = 580 нм), равна … 1. 1158 2. 578 3. 290 4. 145
Date: 2015-05-08; view: 1841; Нарушение авторских прав |