![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Числовые характеристики
Математическим ожиданием дискретной случайной величины называется:
В случае бесконечного множества значений М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами: 1) М(С)=С, где С=const 2) M (CX)=CM (X) (4.5) 3) M (X+Y)=M(X)+M(Y), для любых Х и Y. 4) M (XY)=M (X)M(Y), если Х и Y независимы. Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)= а вводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения D(X)=M(X-
Для вычисления дисперсии пользуются формулой:
Свойства дисперсии и среднего квадратического отклонения:
1) D(C)=0, где С=сonst 2) D(CX)=C2D(X), 3) D(X+Y) =D(X)+D(Y),
если Х и У независимы. Размерность величин 4.3. Математические операции над случайными величинами.
Пусть случайная величина Х принимает значения Таблица 4.2
Квадрат случайной величины Х, т.е. Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида
Если случайные величины Х и У независимы, то:
Аналогично определяются разность и произведение случайных величин Х и У. Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида 4.4. Распределения Бернулли и Пуассона.
Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям: 1. Каждое испытание имеет два исхода, называемые успех и неуспех. Эти два исхода - взаимно несовместные и противоположные события. 2. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q. 3. Все n испытаний - независимы. Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний. Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна
где q=1-р. Выражение (4.10) называется формулой Бернулли. Вероятности того, что событие наступит: а) менее m раз, б) более m раз, в) не менее m раз, г) не более m раз - находятся соответственно по формулам: Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3). Таблица 4.3
Так как правая часть формулы (4.10) представляет общий член биноминального разложения
M(X)=nр (4.11) D(X)=nрq (4.12)
Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы (4.10) пользуются приближенной формулой:
где m - число появлений события в n независимых испытаниях, Выражение (4.13) называется формулой Пуассона. Придавая m целые неотрицательные значения m=0,1,2,...,n, можно записать ряд распределения вероятностей, вычисленных по формуле (4.13), который называется законом распределения Пуассона (таблица 4.4): Таблица 4.4
Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства. Например, число машин, прибывших на автомойку в течении часа, число дефектов на новом отрезке шоссе длиной в 10 километров, число мест утечки воды на 100 километров водопровода, число остановок станков в неделю, число дорожных происшествий. Если распределение Пуассона применяется вместо биномиального распределения, то n должно иметь порядок не менее нескольких десятков, лучше нескольких сотен, а nр< 10. Математическое ожидание к дисперсии случайной величины, распределенной по закону Пуассона, совпадают и равны параметру
M(X)=D(X)=n×p= Date: 2015-05-08; view: 745; Нарушение авторских прав |