Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Устройство и принцип действия термопар
Термопары в комплекте с измерительными приборами применяются для измерения температур от -100 до +1300º С. В отдельных случаях они могут быть использованы для измерения и более высоких температур. Абсолютная точность измерения температур зависит главным образом от выбора электроизмерительной схемы для определения электродвижущих сил, развиваемых термопарой, и может быть достаточно высокой - до 0,05° С. Из других достоинств термопар отметим возможность централизации контроля температур путем присоединения нескольких термопар через переключатель к одному прибору, а также возможность дистанционного измерения температур, что особенно ценно в промышленной практике. Принцип действия термопары (см. рис.1.1) основан на возникновении термоЭДС в цепи, составленной из 2-х разнородных проводников при создании
2 1 4 3 2 2
Рис. 1.1. Схема термопары
Диаметр проводников, используемых для изготовления термопар, составляет 0,2 0,5 мм. Если температуры «горячего» и «холодного» спаев термопары различны, то последняя развивает термоЭДС, не зависящую ни от длины, ни от диаметра термоэлектродов, ни от распределения температуры по их длине. ТермоЭДС термопары зависит только от материала электродов и разности температур горячего и холодного спаев. Если поддерживать температуру холодного спая термопары постоянной и равной t , то термоЭДС термопары будет зависеть только от температуры t рабочего конца. Однозначная зависимость термоЭДС термопары от температуры горячего спая t при постоянстве температуры холодного спая дает возможность использовать термопару для измерения температур. При t = t термоЭДС термопары равна нулю. ТермоЭДС различных пар металлов при одной и той же разности температур t и t сильно отличаются друг от друга. В табл.1.1 приведён перечень наиболее распространенных стандартных термопар.
Таблица 1.1. Стандартные термопары
Кроме вышеперечисленных термопар, в лабораторной практике применяются термопары медь-копель, медь-константан, железо-константан, вольфрам-рений, вольфрам-молибден и некоторые другие. Для изготовления термопар используются обычно такие проводники, которые не изменяют физических свойств и химического состава при высоких температурах и длительной работе, обладают высокой термоэлектродвижущей силой, имеют линейную зависимость термоЭДС от температуры. ТермоЭДС, возникающая в спае, очень мала. Поэтому для работы в комплекте с термопарой используются высокочувствительные измерительные приборы: потенциометры (компенсационного типа) и милливольтметры 3 (рис 1.1). При точных измерениях используются потенциометры. Термопары обычно выпускаются с термоэлектродами длиной не более 2-3 мм. Однако практически часто приходится устанавливать измерительный прибор на значительном расстоянии от термопары. В таких случаях применяются компенсационные (удлинительные провода) 4 (рис.1.1). При этом в точках 2 на зажимах измерительного прибора могут возникнуть дополнительные термоЭДС, если в этих точках соединяются разнородные проводники. Чтобы исключить влияние дополнительных термоЭДС на показание прибора, употребляются соединительные провода из материала, которые в паре с термоэлектродами не дают термоЭДС. Практически в качестве компенсационных проводов можно использовать проводники с малым электрическим сопротивлением, например, медные. Вновь изготовленные и прошедшие ремонт термопары подвергаются предварительной градуировке, а в дальнейшем, в процессе работы, – периодической поверке. В то время как стандартные термопары подвергаются только поверке. Проградуировать термопару – значит найти зависимость термоэлектродви-жущей силы, развиваемой термопарой, от температуры горячего спая при постоянной температуре холодного спая t , равной 0° С. Градуировка заключается в сопоставлении показаний изготовленной и эталонной термопар. При низких температурах при градуировке используются показания образцового термометра. Поверка термопары кроме градуировки включает в себя сравнение Градуировку можно осуществлять двумя способами: по постоянным Если градуировка термопары проводится при температуре холодного спая t , отличной от 0° С, то при построении градуировочной кривой необходимо ввести в показания милливольтметра поправку на температуру холодного спая. Поправка соответствует величине термоЭДС, которая возникает в градуируемой термопаре при температуре её горячего спая, равной температуре помещения, и холодного – 0° С. Учет этой поправки необходим и при эксплуатации термопар с температурой холодного спая, отличной от нуля. Обычно при эксплуатации учет поправки осуществляется установкой нуля милливольтметра, работающего в комплекте с термопарой, на температуру помещения, где расположен прибор и холодный спай термопары. В настоящей работе проводится градуировка термопары вторым (сравнительным) способом в интервале измерения температур от 20° до 300° С.
Date: 2015-05-08; view: 707; Нарушение авторских прав |