Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Вводная часть. Виды теплоёмкостей. Согласно первому закону термодинамики
Виды теплоёмкостей. Согласно первому закону термодинамики или для удельных величин (2.42) изменение внутренней энергии системы по способу подвода движения и расчета его энергии разбивается на две части (составляющие): – работу – энергию движения, подводимого (отводимого) к системе макроскопическим путем (та часть изменение внутренней энергии, которая рассчитывается через макроскопические силы и перемещения) и – теплоту – энергию движения, подведённого (отведенного) к системе микроскопическим путём (та часть изменения внутренней энергии, которая в общем случае не рассчитывается через силы и перемещения). Возникает вопрос, как же рассчитать теплоту , если её в общем случае не удаётся рассчитать через силы и перемещения (в отдельных случаях теплоту можно рассчитать так же, как и работу через силы и перемещения, например при трении). Из опыта известно, что при подводе тепла, как правило, растёт температура рабочего тела. Поэтому количество подведённого к телу тепла исторически определяли как величину, пропорциональную изменению температуры тела: . Коэффициент пропорциональности , позволяющий установить связь между теплотой и изменением температуры тела, называется теплоёмкостью тела. Таким образом, теплоёмкость тела определяется как физическая величина, равная отношению теплоты к изменению температуры тела , [ ] = 1 Дж/К. Теплоемкость тела численно равна теплоте, вызывающей изменение температуры тела на один градус. Следует заметить, что и при свершении работы изменяется температура тела. Поэтому и работу можно рассчитывать пропорционально изменению температуры: , где можно назвать «работоемкость», для которой создать специальные таблицы. Однако этого не требуется, т. к. работу гораздо проще рассчитать через силы и перемещения. Следовательно, введение двух физических величин – теплоты и работы – при рассмотрении первого закона термодинамики обусловлено, в первую очередь, различными методами их расчёта. В теплотехнических расчётах вместо теплоёмкости тела широко используются удельная, объёмная и молярная теплоёмкости. Удельной теплоёмкостью называется отношение теплоёмкости тела к его массе , [ ] = 1 Дж/(кг×К), где – удельная теплота, Дж/кг (неправильно называть удельную теплоёмкость массовой теплоёмкостью, см. приложение Б). Молярной теплоёмкостью называется отношение теплоёмкости тела к количеству вещества (молярности) этого тела: , [ ] = 1 Дж / (моль×К). Объёмной теплоёмкостью называется отношение теплоёмкости тела к его объёму, приведённому к нормальным физическим условиям ( = 101325 Па = 760 мм рт. ст.; = 273, 15 К (0 оС)): , [ ] = 1 Дж/(м 3×К). В случае идеального газа его объём при нормальных физических условиях (НФУ) вычисляется из уравнения состояния . Связь между различными видами теплоёмкости: ; , где – плотность газа при НФУ, = 22,4141 м3/кмоль – молярный объём, приведённый к НФУ. Теплоёмкость идеального газа зависитот температуры . По этому признаку различают истинную и среднюю теплоёмкости. Истинная теплоёмкость соответствует определённой температуре тела (теплоёмкость в точке), так как определяется при бесконечно малом изменении температуры тела . Значение теплоёмкости, которое принимается постоянным в заданном интервале температур от до , называется средней теплоёмкостью в данном интервале температур. Она определяется как отношение теплоты к конечному интервалу температур . Согласно первому закону термодинамики (2.42) одному и тому же изменению внутренней энергии соответствует бесчисленное множество сочетаний различных значений теплоты и работы, т. е. при одном и том же изменении температуры (внутренней энергии) тела теплота, а значит и теплоёмкость, будут различными в различных термодинамических процессах. В случае изотермного процесса (Т = const) температура тела не изменяется ( и ) и теплоту уже нельзя определить как величину, пропорциональную изменению температуры. В этом случае она определяется из первого закона термодинамики, как работа изменения объёма (d U = 0): . В случае изобарного процесса (р = const) уравнение первого закона термодинамики (2.42) запишется в виде . Откуда выводится известное уравнение Майера , (2.43) согласно которому разность удельной изобарной и изохорной теплоёмкостей для данного газа есть величина постоянная и равная удельной газовой постоянной. В случае адиабатного процесса теплота равна нулю (), а значит и теплоёмкость равна нулю: . Уравнение первого закона термодинамики в этом случае запишется в виде . Откуда выводится уравнение адиабатного процесса (адиабаты) . (2.44) Показатель степени, входящий в это уравнение и равный отношению теплоёмкостей, называется показателем адиабаты : . (2.45) Решая совместно (2.43) и (2.45), можно выразить теплоёмкости через и : ; (2.46) Значения истинных теплоёмкостей и их отношения некоторых газов в идеальном состоянии (при и T C = 0 оС) приведены в таблице 7. ъ Таблица 7 – Некоторые характеристики идеальных газов
В среднем по всем газам одинаковой атомарности принято считать, что для одноатомных газов , для двухатомных , для трёхатомных (для водяных паров часто берут точное значение ). В случае произвольного процесса уравнение первого закона термодинамики запишется в виде . Откуда по аналогии с уравнением адиабатного процесса (2.44), полученного исторически первым, выводится уравнение политропного процесса (политропы) в виде , где показатель степени , постоянный для данного процесса, называется показателем политропы . Таким образом, если процесс политропный и показатель политропы известен, то теплоёмкость политропного процесса этого процесса может быть определена расчётным путём, не прибегая к эксперименту, по формуле . Расчёт теплоты через средние теплоёмкости осуществляется по формулам: – для изохорного процесса – для изобарного процесса .
Date: 2015-05-08; view: 937; Нарушение авторских прав |