Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Как преобразовать в десятичное число дробную часть





Известно, что любое рациональное число можно представить в виде десятичной и обыкновенной дроби. Обыкновенная дробь, то есть дробь вида А/В может быть правильной и неправильной. Дробь называется правильной если А<В и неправильной если А>В.

Если рациональное число представлено неправильной дробью, и при этом числитель дроби делится на знаменатель нацело, то данное рациональное число - число целое, во всех иных случаях возникает дробная часть. Дробная часть зачастую бывает очень длинным числом и даже бесконечным (бесконечная периодическая дробь, например 20/6), поэтому в случае с дробной частью у нас возникает не просто задача перевода одного представления в другое, а перевод с определённой точностью.

Правило точности. Предположим, дано десятичное число, которое в виде десятичной дроби представимо с точностью до N знаков. Для того, чтобы соответствующее двоичное число было той же точности, в нём необходимо записать M - знаков, так что бы

2m > 10N

А теперь попробуем получить правило перевода, и для начала рассмотрим пример 5,401

Решение:

Целую часть мы получим по уже известным нам правилам, и она равна двоичному числу 101. А дробную часть разложим по степеням 2.

Шаг 1: 2-2 = 0,25; 0,401 - 0,25 = 0,151. - это остаток.

Шаг 2: Сейчас необходимо степенью двойки представить 0,151. Сделаем это: 2-3 = 0,125; 0,151 - 0,125 = 0,026

Таким образом, исходную дробную, часть можно представить в виде 2-2 +2-3 . То же самое можно записать таким двоичным числом: 0,011. В первом дробном разряде стоит ноль, это потому, что в нашем разложении степень 2-1 отсутствует.

Из первого и второго шагов ясно, что это представление не точное и может быть разложение желательно продолжить. Обратимся к правилу. Оно говорит, что нам нужно столько знаков М чтобы 103 было меньше чем 2М. То есть 1000<2M. То есть в двоичном разложении у нас должно быть не менее десяти знаков, так как 29 = 512 и только 210 = 1024. Продолжим процесс.

Шаг 3: Сейчас работаем с числом 0,026. Ближайшая к этому числу степень двойки 2-6 = 0,015625; 0,026 - 0,015625 = 0,010375 теперь наше более точное двоичное число имеет вид: 0,011001. После запятой уже шесть знаков, но этого пока недостаточно, поэтому выполняем ещё один шаг.

Шаг 4: Сейчас работаем с числом 0,010375. Ближайшая к этому числу степень двойки 2-7 = 0,0078125;

0,010375 - 0,0078125 = 0,0025625

Шаг 5: Сейчас работаем с числом 0,0025625. Ближайшая к этому числу степень двойки 2-9 = 0,001953125;

0,0025625 - 0,001953125 = 0,000609375

Последний получившийся остаток меньше чем 2-10 и если бы мы желали продолжать приближение к исходному числу, то нам бы понадобилось 2-11, но это уже превосходит требуемую точность, а следовательно расчёты можно прекратить и записать окончательное двоичное представление дробной части.

0,401 = 0,011001101

Как видно, преобразование дробной части десятичного числа в двоичное представление немного более сложно, чем преобразование целой части. Таблица степеней двойки в конце лекции.

А сейчас запишем алгоритм преобразования:

Исходные данные алгоритма: Через А будем обозначать исходную правильную десятичную дробь записанную в десятичной форме. Пусть эта дробь содержит N знаков.







Date: 2015-05-05; view: 609; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию