![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Первое начало термодинамики. Внутренняя энергия может изменяться за счет в основном двух различных процессов: совершения над телом работы A′ и сообщения ему тепла Q
Внутренняя энергия может изменяться за счет в основном двух различных процессов: совершения над телом работы A ′ и сообщения ему тепла Q. Совершение работы сопровождается перемещением внешних сил, воздействующих на систему. Так, например, при вдвигании поршня, закрывающего сосуд с газом, поршень, перемещаясь, совершает над газом работу A ′. По третьему закону Ньютона газ при этом совершает над поршнем работу Сообщение газу тепла не связано с перемещением внешних сил и, следовательно, не связано с совершением над газом макроскопической (т. е. относящейся ко всей совокупности молекул, из которых состоит тело) работы. В этом случае изменение внутренней энергии обусловлено тем, что отдельные молекулы более нагретого тела совершают работу над отдельными молекулами тела нагретого меньше. Передача энергии происходит при этом также через излучение. Совокупность микроскопических (т. е. захватывающих не все тело, а отдельные его молекулы) процессов, приводящих к передаче энергии от тела к телу, носит название теплопередачи. Подобно тому, как количество энергии, переданное одним телом другому, определяется работой A, совершаемой друг над другом телами, количество энергии, переданное от тела к телу путем теплопередачи, определяется количеством теплоты Q, отданной одним телом другому. Таким образом, приращение внутренней энергии системы должно быть равно сумме совершенной над системой работы A ′ и количества сообщенного системе тепла Q
Здесь U 1 и U 2 – начальное и конечное значение внутренней энергии системы. Обычно вместо работы A ′, совершаемой внешними телами над системой, рассматривают работу A (равную
Уравнение (1.7) выражает закон сохранения энергии и представляет собой содержание первого закона (начала) термодинамики. Словами его можно выразить следующим образом: количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами. Сказанное отнюдь не означает, что всегда при сообщении тепла внутренняя энергия системы возрастает. Может случиться, что, несмотря на сообщение системе тепла, ее энергия не возрастает, а убывает ( Из (1.7) следует, что количество теплоты Q можно измерять в тех же единицах, что и работу или энергию. В СИ единицей количества теплоты служит джоуль. Для измерения количества теплоты применяется также особая единица, называемая калорией. Одна калория равна количеству теплоты, необходимой для нагревания 1 г воды от 19,5 до 20,5°C. Тысяча калорий называется большой калорией или килокалорией. Опытным путем установлено, что одна калория эквивалентна 4,18 Дж. Следовательно, один джоуль эквивалентен 0,24 кал. Величина Если величины, входящие в (1.7), выражены в разных единицах, то некоторые из этих величин нужно умножить на соответствующий эквивалент. Так, например, выражая Q в калориях, а U и A в джоулях, соотношение (1.7) нужно записать в виде
В дальнейшем мы будем всегда предполагать, что Q, A и U выражены в одинаковых единицах, и писать уравнение первого начала термодинамики в виде (1.7) При вычислении совершенной системой работы или полученной системой теплоты обычно приходится разбивать рассматриваемый процесс на ряд элементарных процессов, каждый из которых соответствует весьма малому (в пределе – бесконечно малому) изменению параметров системы. Уравнение (1.7) для элементарного процесса имеет вид:
где Весьма важно иметь в виду, что Как мы увидим в дальнейшем, величина совершенной системой работы и количество полученной системой теплоты зависят от пути перехода системы из одного состояния в другое. Следовательно, ни Q, ни A не являются функциями состояния, в силу чего нельзя говорить о запасе тепла или работы, которым обладает система в различных состояниях. Таким образом, в символ Δ, стоящий при A и Q, вкладывается иной смысл, чем в символ Δ, стоящий при U. Чтобы подчеркнуть это обстоятельство, в первом случае Δ снабжено штрихом. Символ Δ U означает приращение внутренней энергии, символы Δ′ Q и Δ′ A означают не приращение, а элементарное количество теплоты и работы. Чтобы произвести вычисления, в (1.8) переходят к дифференциалам. Тогда уравнение первого начала принимает следующий вид[6]:
Интегрирование (1.9) по всему процессу приводит к выражению
тождественному уравнению (1.7). Еще раз подчеркнем, что, например, результат интегрирования d ′ A нельзя записать в виде
Такая запись означала бы, что совершенная системой работа равна разности значений (т. е. запасов) работы во втором и первом состояниях.
Пусть газ заключен в цилиндрический сосуд, зарытый плотно пригнанным легко скользящим поршнем (рис.1.2). Если по каким-либо причинам газ станет расширяться, он будет перемещать поршень и совершать над ним работу. Элементарная работа, совершаемая газом при перемещении поршня на отрезок dh, равна
Но Sdh представляет собой приращение объема газа dV. Поэтому выражение для элементарной работы можно записать следующим образом:
Величина δ A в (1.10), очевидно, является алгебраической. Действительно, при сжатии газа направления перемещения dh и силы F, с которой газ действует на поршень, противоположны, вследствие чего элементарная работа δ A будет отрицательна. Приращение объема dV в этом случае также будет отрицательным. Таким образом, формула (1.10) дает правильное выражение для работы при любых изменениях объема газа. Если давление газа остается постоянным (для этого должна одновременно изменяться соответствующим образом температура), работа, совершаемая при изменении объема от значения V 1 до значения V 2, будет равна
Если же при изменении объема давление меняется, формула (1.10) справедлива только для достаточно малых Δ V. В этом случае работа, совершаемая при конечных изменениях объема, должна вычисляться как сумма элементарных работ вида (1.10), т. е. путем интегрирования:
Найденные выражения для работы справедливы при любых изменениях объема твердых, жидких или газообразных тел. Чтобы в этом убедиться, рассмотрим еще один пример. Возьмем твердое тело произвольной формы, погруженное в жидкую или газообразную среду, которая оказывает на тело одинаковое во всех точках давление p (рис. 1.3). Предположим, что тело расширяется так, что отдельные элементарные участки его поверхности Δ Si получают различные перемещения dhi. Тогда i -й участок совершит работу δ Ai, равную
Вынося за знак суммы одинаковое для всех участков p и замечая, что
![]() ![]() ![]()
Изобразим процесс изменения объема тела на диаграмме (р, V) (рис. 1.4). Элементарной работе Из сказанного в п.1.3 ясно, что полученные нами формулы могут быть применимы только к обратимым процессам. Заметим, что, использовав выражение (1.10) (с переходом к дифференциалам), уравнение (1.9) первого начала термодинамики можно написать следующим образом:
Date: 2015-05-05; view: 1021; Нарушение авторских прав |