Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Переход от базовой таблицы форм к общей. Квазифрактальность общей таблицы форм. Опредмечивание и отражение форм деятельности





 

До сих пор речь шла только о девяти типах форм: трех базовых и еще шести смешанных. Однако уже из того, что говорилось во Введении об универсумах форм движения, форм деятельности и форм развития, явствует, что эти универсумы представляют собой не просто множества однопорядковых элементов, а некоторые сложные, иерархически упорядоченные структуры. Для того чтобы получить адекватные выразительные средства для экспликации подобных представлений, перейдем к понятию общей "таблицы" форм. Пока оно будет определено неформально, с тем, чтобы вернуться к этому вопросу после нескольких циклов интерпретации.

Одно из фундаментальных отличий "таблицы" форм от периодической таблицы химических элементов состоит в том, что каждая из ее ячеек обладает собственной внутренней структурой, имеющей свойства, аналогичные свойствам всей "таблицы", за исключением свойства триединственности ( четырехмерной свертки ), которым обладает только вся "таблица" в целом. Уточним сказанное в той мере, в какой это необходимо для дальнейшего изложения.

Представим для примера внутреннюю структуру ячейки форм деятельности.

 

K{&3}F{&1} K{&3}F{&2} &3
K{&2}F{&1} &2 K{&2}F{&3}
&1 K{&1}F{&2} K{&1}F{&3}

 

Здесь символ каждой из ячеек составлен из двух частей: символа строки-категории и символа столбца-формации, на пересечении которых находится ячейка. Очевидно, символ типа K{&i}F{&i} означает просто &i.

Будем называть эту таблицу разбиением ячейки & первого порядка. Диагональные элементы &1, &2, &3 будем называть чистыми формами деятельности первого порядка. Форму & по отношению к формам &1, &2, &3 будем называть общей, а формы &1, &2, &3 по отношению к форме & – частными формами деятельности первого порядка. Соответственно, категорию деятельности K{&} по отношению к категориям K{&1}, K{&2}, K{&3} будем называть общей, а категории K{&1}, K{&2}, K{&3} по отношению к категории K{&} – частными категориями деятельности первого порядка. Аналогично, формацию деятельности F{&} по отношению к формациям F{&1}, F{&2}, F{&3} будем называть общей, а формации F{&1}, F{&2}, F{&3} по отношению к формации F{&} – частными формациями деятельности первого порядка.

Аналогично строится разбиение смешанных форм. Приведем примеры разбиений первого порядка для ячеек K{*}nF{&}t и K{@}rF{&}i, находящихся в базовой "таблице" форм соответственно "над" и "под" ячейкой форм деятельности.

K{*3}F{&1} K{*3}F{&2} K{*3}F{&3}
K{*2}F{&1} K{*2}F{&2} K{*2}F{&3}
K{*1}F{&1} K{*1}F{&2} K{*1}F{&3}

 

K{@3}F{&1} K{@3}F{&2} K{@3}F{&3}
K{@2}F{&1} K{@2}F{&2} K{@2}F{&3}
K{@1}F{&1} K{@1}F{&2} K{@1}F{&3}

 

Формы, расположенные на "обратной" диагонали (слева направо и сверху вниз) разбиения формы K{@}rF{&}i, назовем опредмечиванием форм деятельности, а формы, расположенные на обратной диагонали разбиения формы K{*}nF{&}tидеалом форм деятельности.


III.

ПРЕДМЕТНЫЕ ИНТЕРПРЕТАЦИИ СИМВОЛОВ "ТАБЛИЦЫ" ФОРМ

 







Date: 2015-06-07; view: 463; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию