Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Понятие вероятности
Исторически первой группой случайных событий, которые были исследованы математиками, были азартные игры. Сами правила игры предполагали равноправие участников перед судьбой, при всем мастерстве игрока многое зависело от "везения". Мы также рассмотрим несколько примеров из этой области, т.к. они хорошо иллюстрируют некоторые возможности аппарата теории вероятностей, который пригодится нам в дальнейшем для других случаев. В условиях игры (в карты, в кости) математики и игроки связывают понятие вероятности выигрыша с шансом получения выигрышной комбинации по сравнению с общим числом всех возможных комбинаций. Пример 1. При падении монеты существует два возможных результата (математики называют эти результаты элементарными исходами): выпадет герб или выпадет решетка. Оба результата равновероятны, т.е. вероятность того, что монета останется лежать гербом вверх равна 50% (или 1/2), с такой же вероятностью выпадет другая сторона. Какой бы результат не загадал игрок как благоприятный для себя, его шанс выиграть и вероятность проиграть одинаковы. Пример 2. При бросании игральной кости существует уже шесть возможных элементарных исходов (количество выпавших очков может меняться от 1 до 6). Если игральная кость имеет правильную форму, все шесть результатов равновероятны. Другими словами, вероятность того, что при единственном выбрасывании кости выпадет, например, шесть очков, равна 1/6. Если только эта цифра считается выигрышем при данном броске, шансов выиграть у игрока в три раза меньше, чем в прошлый раз. Если мы хотим "уровнять" шансы при бросании игральной кости с шансом выиграть при бросании монеты, нам надо изменить правила игры, например, считать выигрышем выпадение любого четного числа. Поскольку игральная кость имеет три грани с четными числами и три грани с нечетными, шансы выиграть и проиграть при единственном броске у нас будут одинаковыми (вероятность выигрыша станет равной 1/2, т.е. такой же, как при бросании монеты). Задание Чему равна вероятность проигрыша в каждом случае? Значит ли это, что играть в кости менее выгодно? Date: 2015-06-06; view: 460; Нарушение авторских прав |