Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Электромагнитное поле. Электромагнитные волны. Волновые свойства света. Различные виды электромагнитных излучений и их практическое применение
Английский учёный Максвелл теоретически предсказал существование электромагнитного поля. Он считал, что между полем магнитным и электрическим существует связь. Переменное магнитное поле порождает электрическое поле и наоборот. В результате в пространстве поле распространятся в виде электромагнитной волны. Электромагнитная волна – это электромагнитные колебания, распространяющиеся в пространстве с течением времени. Немецкий физик Герц в 1888г. впервые получил электромагнитные волны. Электромагнитные волны обладают следующими свойствами: 1. распространяются прямолинейно 2. поглощаются диэлектриками 3. отражаются металлами 4. преломляются 5. распространяются со скоростью С=3•108 6. электромагнитная волна – поперечная волна. По своим физическим свойствам световые волны аналогичны электромагнитным волнам. По современным представлениям свет имеет двойственную структуру: при излучении и поглощении – это поток частиц, а при распространении – это электромагнитная волна. Световые волны обладают теми же свойствами, что и электромагнитные волны: отражение, преломление, поглощение, поляризация, интерференция, дифракция. Поляризация доказывает, что свет – это поперечная электромагнитная волна. Интерференция – это сложение волн, в результате которого волны усиливают или ослабляют друг друга по амплитуде. Дифракция – это огибание волнами препятствий, сравнимых с длиной волны (небольших). На границе двух сред световая волна меняет своё направление – преломляется. Скорость света равна С=3•108 м/с. Частота света ν = 1014 Гц. Длина волны λ = 4•10−9 -7•10−9 м. Видимый свет – это один из видов излучения на шкале электромагнитных излучений. Помимо видимого света есть другие виды излучений: низкочастотные колебания, радиоволны, инфракрасное излучение, ультрафиолетовое излучение, рентгеновское излучение и гамма излучение. Низкочастотное излучение возникает в диапазоне частот о ν = 0 до 104 Гц. Этому излучению соответствует длина волны λ = 104 до ¥ м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов. Радиоволны занимают диапазон частот ν = 104-1013 Гц. Им соответствует длина волны λ = 104 -10−4 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Большая частота радиоволн приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния (радиовещание, телевидение, радиосвязь, радиолокация). Инфракрасное излучение занимают диапазон частот ν = 1013- 1014 Гц. Им соответствует длина волны λ = 10−4 -10−6 м. Инфракрасное излучение было открыто в 1800 году астрономом Гершелем. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Источники инфракрасного излучения – Солнце, любое нагретое тело. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. Ультрафиолетовое излучение - не видимое глазом электромагнитное излучение, n=1014-1016 Гц, λ = 10−7 -10−9 м. Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Риттером. Источник ультрафиолетового излучения — валентные электроны атомов и молекул, также ускорено движущиеся свободные заряды. В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез витамина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действие этого излучения гибнут болезнетворные бактерии. Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение стекло. Рентгеновское излучение – это невидимое глазом излучение. n=1016-1019 Гц, λ = 10−9 -10−11 м. Рентгеновское излучение было открыто в 1895 году немецким физиком Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка. Естественными источниками рентгеновского излучения является Солнце и др. космические объекты. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии(при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Гамма излучение - коротковолновое электромагнитное излучение. n=1019-1020 Гц, λ = 10−11 -10−13 м. Гамма излучение было открыто французским ученым Полем Вилларом в 1900 году. Гамма излучение связано с ядерными процессами, явлениями радиоактивного распада. Бывает трёх видов: альфа, бета, гамма излучения. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма излучение отрицательно воздействует на человека.
|
Date: 2015-11-15; view: 1974; Нарушение авторских прав