Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Краткие сведения из теории
Принцип работы любого преобразователя электроэнергии в системах энергоснабжения и в приборостроении основан на периодическом включении и выключении электрических вентилей. В качестве вентиля может использоваться любой выпускаемый промышленностью прибор, работающий в ключевом режиме. В ключевом режиме на приборе будет выделяться минимальная мощность, что в основном и определяет КПД устройства. В случае идеального ключа на этапе его проводящего состояния падение напряжения на ключе равно нулю. В запертом состоянии отсутствие тока также определяет нулевое значение потери мощности. В настоящее время в качестве электрических вентилей используются полупроводниковые приборы, основные из которых представлены на рис. 2.1 (для каждого прибора даны его символическое изображение и типовая вольт-амперная характеристика). Современный силовой полупроводниковый ключ – сложная схема, содержащая множество параллельных структур. По степени управляемости полупроводниковые приборы разделяются на неуправляемые вентили (диоды, рис. 2.1, а), не полностью управляемые приборы (традиционные тиристоры, рис. 2.1, б, и симисторы, рис. 2.1, г) и полностью управляемые приборы (транзисторы, рис. 2.1, д, Вольт-амперная характеристика (ВАХ) диодов при малых токах совпадает с ВАХ p–n-перехода:
где
а
б
в
г
д
е
ж
Рис. 2.1. Силовые полупроводниковые приборы Рис. 2.2. Упрощенная ВАХ (а) и эквивалентная схема (б) диода
Силовые диоды обычно характеризуются набором статических, предельно допустимых и динамических параметров. К статическим параметрам относятся пороговое напряжение и эквивалентное сопротивление, рассмотренные выше, а также среднее значение К динамическим параметрам диода относятся его временные или частотные характеристики: время обратного восстановления
Рис. 2.3. Испытательная схема (а) и временная диаграмма спада обратного тока (б) диодов В течение времени
Заряд восстановления запирающих свойств диода определяется как
где Потери мощности в диоде складываются из потерь
При работе диода в режиме периодической коммутации потери проводимости можно рассчитать по формуле
где Потери восстановления запирающих свойств диода определяются выражением [3]
где Динамические потери в диоде Выпрямительные диоды. Эта группа диодов отличается высокими значениями обратного напряжения (от 50 В до 5 кВ) и прямого тока (от 10 А до 5 кА). Массивная структура диодов ухудшает их быстродействие. Поэтому время обратного восстановления обычно не нормируется и находится в диапазоне 25…100 мкс, что ограничивает использование диодов в цепях с частотой не выше 500 Гц. Прямое падение напряжения в выпрямительных диодах достигает 2,5…3 В у приборов высокого напряжения. Кроме отдельных выпрямительных диодов выпускаются силовые диодные модули, включающие в себя последовательно-параллельные сборки и схемы мостовых конфигураций. Быстродействующие диоды подразделяются на быстровосстанавливающиеся диоды и на диоды Шоттки. При производстве быстровосстанавливающихся диодов используются различные технологические методы, уменьшающие время восстановления. Благодаря этому удается снизить время Таблица 2.1 Date: 2015-11-13; view: 597; Нарушение авторских прав |