Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Шинная архитектура





Шинная архитектура является открытой, поскольку позволяет подключать новые устройства

31)Канальная архитектура. Изобретение относится к технике связи и может быть использовано в системах беспроводной связи. Технический результат - повышение производительности и стабильности системы беспроводной связи путем управления мощностью и характеристиками передачи дополнительно канала в обратной линии связи, такими как, например, скорость передачи данных, разрешение или запрет передачи, шаг регулирования. Управление мощностью передачи дополнительного канала в обратной линии связи системы беспроводной связи заключается в том, что принимают первый поток управления мощностью для управления мощностью передачи дополнительного канала в комбинации с, по меньшей мере, одним другим каналом обратной линии связи, принимают второй поток управления мощностью для управления характеристикой передачи дополнительного канала и регулируют мощность передачи и характеристику дополнительного канала на основании первого и второго потоков управления мощностью.

32)Сопроцессор — специализированный процессор, расширяющий возможности центрального процессора компьютерной системы, но оформленный как отдельный функциональный модуль. Физически сопроцессор может быть отдельной микросхемой или может быть встроен в центральный процессор.

Различают следующие виды сопроцессоров:

математические сопроцессоры общего назначения, обычно ускоряющие вычисления с плавающей запятой;

сопроцессоры ввода-вывода, разгружающие центральный процессор от контроля над операциями ввода-вывода или расширяющие стандартное адресное пространство процессора;

сопроцессоры для выполнения каких-либо узкоспециализированных вычислений.

Сопроцессоры могут входить в набор логики, разработанный одной конкретной фирмой (например Intel выпускала в комплекте с процессором 8086 сопроцессоры 8087 и 8089) или выпускаться сторонним производителем (например, Weitek (англ.) 1064 для Motorola m68k и 1067 для Intel 80286).

33)Микропроцессорная система представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом из микропроцессора и/или микроконтроллера.



Микропроцессорное устройство (МПУ) представляет собой функционально и конструктивно законченное изделие, состоящее из нескольких микросхем, в состав которых входит микропроцессор; оно предназначено для выполнения определённого набора функций: получение, обработка, передача, преобразование информации и управление.

34) Система на кристалле - в микроэлектронике - электронная схема, выполняющая функции целого устройства (например, компьютера) и размещенная на одной интегральной схеме.

В зависимости от назначения она может оперировать как цифровыми сигналами, так и аналоговыми, аналого-цифровыми, а также частотами радиодиапазона. Применяются в портативных и встраиваемых системах.

Если разместить все необходимые цепи на одном полупроводниковом кристалле не удается, применяется схема из нескольких кристаллов, помещенных в единый корпус. СнаК считается более выгодной конструкцией, так как позволяет увеличить процент годных устройств при изготовлении и упростить конструкцию корпуса.

35)Виртуальная машина - программная и/или аппаратная система, эмулирующая аппаратное обеспечение некоторой платформы и исполняющая программы для гостевой платформы на платформе-хозяинеили виртуализирующая некоторую платформу и создающая на ней среды, изолирующие друг от друга программы и даже операционные системы;также спецификация некоторой вычислительной среды (например: «виртуальная машина языка программирования Си»).

Виртуальная машина исполняет некоторый машинно-независимый код или машинный код реального процессора. Помимо процессора, ВМ может эмулировать работу, как отдельных компонентов аппаратного обеспечения, так и целого реального компьютера (включая BIOS, оперативную память, жёсткий диск и другие периферийные устройства). В последнем случае в ВМ, как и на реальный компьютер, можно устанавливать операционные системы (например, Windows можно запускать в виртуальной машине под Linux или наоборот). На одном компьютере может функционировать несколько виртуальных машин (это может использоваться для имитации нескольких серверов на одном реальном сервере с целью оптимизации использования ресурсов сервера).

36)Можно выделить следующие типы

1) Скалярные (SISD)обрабатывает один элемент данных за одну операцию.

2) Векторные (SIMD) обрабатывает несколько данных, выполняя над ними одну операцию.

3) MISD несколько вычислительных устройств выполняют различные операции над одним данным.

4) MIMD несколько вычислительных устройств выполняют различные операции над различными данными (например многопроцессорная система из скалярных процессоров)

5) Конвейер над данными движущимися через конвейер выполняются различные операции на каждом шаге конвейера

6) Систолические матрицы данные обрабатываются в процессорных элементах расположенных в виде массива



Каждый из этих "типов" можно разделить еще на подтипы. В чистом виде каждый тип встречается редко, обычно процессор (микроконтроллер) может принадлежать сразу к двум типам (например, векторно-конвейерный).

37)Кэш-память - это скоростная и маленькая по объему память, требуется, чтобы быстро получить нужные данные.

Кэш - промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из медленной памяти или их перевычисление, что делает среднее время доступа короче.

Ряд моделей ЦП обладают собственным кэшем, для того чтобы минимизировать доступ к ОЗУ, которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае, когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно не намного меньше частоты ЦП.

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров — до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости обращения и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня — L1-cache. Она является неотъемлемой частью процессора, т к расположена на одном с ним кристалле и входит в состав функциональных блоков. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. На других его можно отключить, но тогда значительно падает производительность процессора. L1 кэш работает на частоте процессора, и обращение к нему может производиться каждый такт . Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик — не более 128 КБ.

Вторым по быстродействию является L2-cache — кэш второго уровня. Обычно он расположен либо на кристалле, либо в непосредственной близости от ядра, например, в процессорном картридже (только в слотовых процессорах) . В старых процессорах — набор микросхем на системной плате. Объём L2 кэша от 128 КБ до 1−8 МБ. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования — при общем объёме кэша в 8 МБ на каждое ядро приходится по 2 Мб. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В отличие от L1 кэша, его отключение может не повлиять на производительность системы. Кэш третьего уровня наименее быстродействующий и обычно расположен отдельно от ядра ЦП, но может быть размером более 32 МБ. L3 кэш медленнее предыдущих кэшей, но все равно, значительно быстрее, чем оперативная память.

38)Под архитектурой ОЗУ принято понимать совокупность представлений о составе его компонентов, организации обмена информацией с внешней средой, а также о функциональных возможностях, реализуемых посредствам команд.

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный внешний модуль или располагаться на одном кристалле с процессором, например, в однокристальных ЭВМ или однокристальных микроконтроллерах.

39)Назначение и принцип работы ОЗУ. Назначение: хранение данных и команд для дальнейшей их передачи процессору для обработки; Хранение результатов вычислений, произведенных процессором; Считывание (или запись) содержимого ячеек; Особенности работы ОЗУ.

Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора. Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ. Пока идет работа с программой она присутствует в оперативной памяти. Как только работа с ней закончена, данные перезаписываются на жесткий диск. Т.е. потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом. Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени.

40)Типы шин, принцип обмена информацией:Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем.

Системная магистраль включает в себя четыре основные шины: шина адреса; шина данных; шина управления; шина питания.

Шина адреса служит для определения адреса (номера) устройства, с которым процессор обменивается информацией в данный момент. Каждому устройству (кроме процессора), каждой ячейке памяти в микропроцессорной системе присваивается собственный адрес. Когда код какого-то адреса выставляется процессором на шине адреса, устройство с таким адресом понимает, что ему предстоит обмен информацией. Шина адреса определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и максимально возможный размер программы, и максимально возможный объем запоминаемых данных. Количество адресов, обеспечиваемых шиной адреса, определяется как 2N, где N — количество разрядов. Разрядность шины адреса обычно кратна 4 и может достигать 32 и даже 64. Шина адреса может быть однонаправленной (когда магистралью всегда управляет только процессор) или двунаправленной (когда процессор может временно передавать управление магистралью другому ус-ву, например контроллеру прямого доступа к памяти). Наиболее часто используются типы выходных каскадов с тремя состояниями или обычные ТТЛ (с двумя состояниями).

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы. Обычно в пересылке информации участвует процессор, который передает код данных в какое-то устройство или в ячейку памяти или же принимает код данных из какого-то устройства или из ячейки памяти. Но возможна и передача информации между устройствами без участия процессора. Шина данных всегда двунаправленная. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд. Обычно шина данных имеет 8, 16, 32 или 64 разряда. Понятно, что за один цикл обмена по 64-разрядной шине может передаваться 8 байт информации, а по 8-разрядной — только один байт. Разрядность шины данных определяет и разрядность всей магистрали.

Шина управления состоит из отдельных управляющих сигналов. Каждый из этих сигналов во время обмена информацией имеет свою функцию. Некоторые сигналы определяют моменты времени, когда информационный код выставлен на шину данных. Другие управляющие сигналы могут использоваться для подтверждения приема данных, для сброса всех устройств в исходное состояние, для тактирования всех устройств и т.д. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали) с работой памяти или устройства ввода/вывода. Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа. Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий), с открытым коллектором (для двунаправленных и мультиплексированных линий).

Шина питания предназначена для питания системы. Она состоит из линий питания и общего провода. В микропроцессорной системе может быть один источник питания (чаще +5 В) или несколько источников питания (обычно еще –5 В, +12 В и –12 В). Каждому напряжению питания соответствует своя линия связи. Все устройства подключены к этим линиям параллельно.

41)Накопители на магнитных дисках:

Накопитель на гибких дисках (НГМД, дискета)

Накопитель на жёстких магнитных дисках (НЖМД, жёсткий диск, винчестер)

Накопители на оптических дисках

В накопителях на оптических дисках в качестве носителя используется диск, покрытый отражающим веществом со специальными оптическими свойствами. Наиболее распространенным видом оптических накопителей является компакт-диск (CD).

Стандартный компакт-диск состоит из основы, отражающего и защитного слоев. Основа выполнена из прозрачного поликарбоната, на котором методом прессования сформирован информационный рельеф. Поверх рельефа напыляется металлический отражающий слой. Отражающий слой покрывается сверху защитным слоем лака, чтобы вся металлическая поверхность была защищена от контакта с внешней средой.

Информация записана на диске в виде спиральной дорожки, идущей от центра к краю диска, на которой расположены углубления (так называемые питы). Информация кодируется чередованием питов и промежутков между ними. Лазерный луч головки привода проходит по дорожке и по характеру отраженного луча считывает информацию.

Наиболее распространены диски CD-ROM, на которые информация наносится фабрично и не может быть изменена. Существуют также диски и приводы CD-R, которые позволяют однократно записывать CD на специальные заготовки, и CD-RW, которые могут записывать и читать компакт-диски.

Компакт-диски имеют низкую цену, высокое быстродействие и срок хранения данных, измеряемый десятками лет.

В последние годы большое распространение получили диски DVD. Изначально изобретенный для записи цифрового видео, сейчас он используется для хранения больших объемов (до нескольких гигабайт) информации. По своему строению DVD-диски очень схожи с компакт-дисками.Существуют также накопители, в которых применяется комбинация магнитных и оптических свойств вещества. Такие накопители называют магнитооптическими.

Флеш-память - разновидность полупроводниковой технологии электрически перепрограммируемой памяти. Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей и чувствительность к электростатическому разряду.

42)Многоя́дерный проце́ссор — центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

В настоящее время значимыми являются несколько семейств процессоров ARM:

ARM7 (с тактовой частотой до 60-72 МГц), предназначенные, для недорогих мобильных телефонов и встраиваемых решений средней производительности.

ARM9, ARM11 (с частотами до 1 ГГц) для продвинутых телефонов, карманных компьютеров и встраиваемых решений высокой производительности.

Cortex A — новое семейство процессоров на смену ARM9 и ARM11.

Cortex M — новое семейство процессоров на смену ARM7, также призванное занять новую для ARM нишу встраиваемых решений низкой производительности. В семействе присутствуют три значимых ядра: Cortex M0, Cortex M3 и Cortex M4.

Популярное семейство микропроцессоров xScale фирмы Marvell (до 27 июня 2007 года — Intel), в действительности является расширением архитектуры ARM9, дополненной набором инструкций Wireless MMX, специально разработанных фирмой Intel для поддержки мультимедийных приложений.






Date: 2015-11-13; view: 1986; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.015 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию