Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Ветер в деревьях





 

Острый, острый ветер, пробирающийся сквозь хаос мира, подобно острому идеальному резцу скульптора…

Д. Г. Лоуренс

 

Открытия, сделанные летом 1976 года, решительно преобразовали мир биологии рака, вновь поместив гены в центр внимания. Теория протоонкогенов Гарольда Вармуса и Майкла Бишопа стала первой связной и непротиворечивой теорией канцерогенеза. Она объясняла, каким образом и радиация, и сажа, и сигаретный дым, и прочие самые разнообразные и на первый взгляд никак не связанные между собой факторы могут приводить к раку — вызывая мутацию и тем самым активируя предшественники онкогенов в клетке. Эта теория придала смысл отмеченной Брюсом Эймсом взаимосвязи между канцерогенами и мутагенами: химические вещества, вызывающие мутации в ДНК, приводят к раку потому, что изменяют клеточные протоонкогены. Проясняла теория и то, почему один и тот же тип рака встречается, пусть и с разной частотой, и у курильщиков, и у некурящих: потому что в клетках и у тех, и у других имеются одинаковые протоонкогены — но у курильщиков рак возникает чаще за счет того, что содержащиеся в табачном дыме канцерогены увеличивают скорость мутаций.

Но как же выглядят гены рака у человека? Вирусологи обнаружили ген src сперва в вирусах, а потом и в клетках, но никто не сомневался в том, что по всему геному человека разбросано множество и других эндогенных протоонкогенов.

У генетиков есть два разных способа «увидеть» гены. Первый способ — структуральный: гены можно наблюдать в форме физической структуры, кусков ДНК, уложенных в хромосому, точь-в-точь как представляли себе Морган и Флемминг. Второй способ — функциональный: гены можно представлять себе, как Мендель, в наследовании тех или иных черт, передающихся от поколения к поколению. В период между 1970 и 1980 годами генетики, занимающиеся проблемами рака, начали рассматривать вызывающие рак гены в свете двух этих подходов. Каждое отдельное наблюдение усиливало понимание механизмов канцерогенеза и подводило науку все ближе к постижению ключевых молекулярных нарушений, связанных с раком у людей.

Сначала обнаружили структуру ракового гена, его анатомию. В 1973 году, когда Вармус и Бишоп только приступали к первым исследованиям гена src, чикагскому гематологу Джанет Роули удалось увидеть ген рака в осязаемой, физической форме. Роули изучала закономерности окрашивания хромосом в клетках, стремясь научиться выявлять нарушения хромосом в раковых клетках. Окрашивание хромосом, техника, которой она овладела в совершенстве, находится посередине между наукой и искусством — причем искусством, отставшим от жизни, словно традиционная живопись в эру цифрового изображения. В эпоху, когда генетики углубились в мир РНК, опухолевых вирусов и онкогенов, Роули упорно тащила свою отрасль назад к корням — к окрашенным синеньким хромосомам Бовери и Флемминга. Более того, нагромождая анахронизм на анахронизм, она и предметом исследования выбрала хронический миелогенный лейкоз (ХМЛ), знаменитое беннеттовское «нагноение крови».

Исследования Роули основывались на предыдущих работах двух патологов из Филадельфии, также занимавшихся ХМЛ. В конце 1950-х годов Питер Ноуэлл и Дэвид Хангерфорд обнаружили, что в клетках этой разновидности лейкоза одна из хромосом всегда короче, чем ее аналог в нормальной клетке. В клетке человека содержится сорок шесть хромосом — парно, по двадцать три от каждого родителя. Ноуэлл обнаружил, что в клетках ХМЛ у одной из пары двадцать второй хромосомы всегда не хватает головки. Ноуэлл назвал это нарушение филадельфийской хромосомой, в честь места, где сделал это открытие. Однако ни Ноуэлл, ни Хангерфорд не могли понять, откуда берется это нарушение и куда девается недостающая часть хромосомы.

Шагая по стопам этого исследования, Роули стала отслеживать такую укороченную хромосому. Рассматривая тысячекратно увеличенные фотографии своих образцово окрашенных препаратов, — она раскладывала их на обеденном столе и склонялась над фотографиями, ища недостающий кусок знаменитой филадельфийской хромосомы, — Роули обнаружила закономерность. Пропавшая часть двадцать второй хромосомы прикреплялась в другое место: к концу девятой хромосомы. А кусок девятой хромосомы, напротив, крепился к двадцать второй. Подобное генетическое событие получило название «транслокация» — обмен участками между двумя хромосомами.

Роули обследовала все новых и новых пациентов, больных ХМЛ, и неизменно обнаруживала у них все ту же транслокацию. О том, что раковые клетки изобилуют хромосомными патологиями, было известно еще со времен фон Ганземана и Бовери. Данные Роули позволяли сделать гораздо более глубокие выводы. Рак — не беспорядочный хромосомный хаос, а упорядоченный хромосомный хаос: определенным разновидностям рака присущи специфические мутации, одинаковые во всех раковых клетках.


Хромосомные транслокации способны создавать новые гены, называемые химерами, за счет слияния двух генов, прежде локализованных в разных хромосомах, — скажем, «голова» девятой хромосомы соединяется с «хвостом» тринадцатой. Роули предположила, что транслокация, характерная для ХМЛ, как раз и приводит к образованию химерного гена. Роули не знала, какие именно функции выполняет этот новый химерный уродец, но продемонстрировала, что в раковых клетках человека могут существовать уникальные генетические нарушения, проявляющиеся в виде деформации структуры хромосом. Впоследствии было выявлено, что филадельфийская транслокация приводит к образованию онкогена.

 

В начале 1970-х годов Альфред Кнудсон, генетик из Калифорнийского технологического института, разработал совершенно иной метод выявления гена, вызывающего рак человека.

Роули визуализовала гены, вызывающие рак, изучая физическую структуру хромосом раковой клетки. Кнудсон же сосредоточился на функциях гена. Гены — единицы наследственности: они переносят те или иные свойства — признаки — от поколения к поколению. Кнудсон рассудил так: если гены вызывают рак, то можно выявить закономерности в наследовании рака, точно так же как Мендель пришел к самой идее существования генов, изучая наследование оттенка цветов и высоты гороха.

В 1969 году Кнудсон перешел в техасский Онкологический центр Монро Данауэйя Андерсена, где Фрейрих основал преуспевающий клинический центр, посвященный раку у детей. Кнудсону требовался «образцовый» рак — передающаяся по наследству злокачественность, закономерности наследования которой помогли бы выявить, как работают гены, вызывающие рак. Самым естественным выбором в такой ситуации была ретинобластома — редкая и диковинная разновидность рака глаза. Еще де Гувеа в Бразилии описал поразительное свойство этого рака проявляться в одной и той же семье на протяжении нескольких поколений.

Ретинобластома — крайне трагичный вариант рака, и не только потому, что не щадит детей. Она затрагивает один из самых важных для ребенка органов: глаз. Иногда болезнь диагностируется, когда ребенок замечает, что мир вокруг начинает тускнеть и размываться. Иногда этот рак обнаруживают совершенно случайно, по детским фотографиям: от вспышки глаз ребенка сверкает, как у кошки под фонарем, и становится видно таящуюся в глубине опухоль. Если недуг не лечить, то он распространяется дальше, затрагивая глазной нерв, а оттуда поднимается в мозг. Основными методами лечения является облучение опухоли высокими дозами гамма-радиации или хирургическое удаление глаза.

Ретинобластома бывает двух видов: наследственная «семейная» форма и спорадически возникающая опухоль. Де Гувеа описывал наследственный вариант. У детей, страдающих наследственной ретинобластомой, болезнь часто встречается в семьях: у отцов, матерей, родных и двоюродных братьев и сестер, других родственников. Как правило, подобно случаю, описанному де Гувеа в Рио, опухоли возникают на обоих глазах. Однако ретинобластома наблюдается и у детей, в семьях которых никогда не случалось ничего подобного. В таких случаях опухоль всегда затрагивает только один глаз.


Эта наследственная закономерность интриговала Кнудсона. Он задался вопросом, не поможет ли математический анализ найти какие-либо отличия в развитии рака при спорадической и наследственной форме ретинобластомы. Для этого Кнудсон провел простейший эксперимент: разделил больных детей на две группы — со спорадической формой ретинобластомы и с наследственной — и стал изучать их истории болезни. По больничным записям он составил таблицы возраста, в котором проявилось заболевание, а потом на основании этих таблиц построил график. Оказалось, что рак в этих двух группах развивался с разной скоростью. При наследственной ретинобластоме наступление болезни шло стремительно, диагноз, как правило, ставился в возрасте от двух до шести месяцев. Спорадическая ретинобластома обычно проявлялась в возрасте от двух до четырех лет.

Почему одно и то же заболевание у разных детей развивается с разной скоростью? Позаимствовав приемы и простые уравнения у физики и теории вероятности, Кнудсон построил модель развития рака в двух группах и обнаружил, что все данные укладываются в несложную модель. У детей с наследственной ретинобластомой для развития рака требовалось только одно генетическое нарушение, а у детей со спорадической формой — два.

Отсюда возникал еще один озадачивающий вопрос: почему возникновение рака при наследственной форме болезни вызывается только одним генетическим нарушением, а при спорадической — двумя? Кнудсон предложил простой и красивый ответ. «Число два, — говорил он, — любимое число генетиков». В каждой нормальной клетке человека имеется по две копии каждой хромосомы, а следовательно — и по две копии каждого гена. В каждой нормальной клетке имеются две нормальные копии гена ретинобластомы — Rb. Кнудсон предположил, что для развития спорадической ретинобластомы обе копии гена Rb активируются путем мутации. Поэтому спорадическая ретинобластома развивается в более позднем возрасте, ведь для нее в одной клетке должны накопиться две одинаковые мутации.

Дети же с наследственной ретинобластомой рождаются с дефектной копией Rb. В их клетках одна копия гена дефектна с самого начала, поэтому требуется лишь одно генетическое изменение, чтобы клетка это почувствовала и начала делиться. Таким образом, дети с семейной ретинобластомой изначально имеют предрасположенность к болезни, и рак у них развивается быстрее, как и пронаблюдал Кнудсон в статистических таблицах. Кнудсон назвал это теорией двойного удара. Чтобы спровоцировать деление клетки, тем самым вызвав рак, для каждого гена требуется две мутации, два удара по генам.


Теория двойного удара Кнудсона прекрасно объясняла наследование ретинобластомы, но на первый взгляд казалась не в ладу с изначальным пониманием молекулярных основ рака. Вспомним, что гену src, для того чтобы вызывать бесконтрольное деление клетки, нужна лишь одна активированная копия. Почему же тогда для Rb требуются две?

Ответ кроется в функциях этих генов. Ген src активирует некую функцию клеточного деления. Мутация по этому гену, как показали Рей Эриксон и Хидэсабуро Ханафуса, создает клеточный белок, неспособный остановиться, — неукротимую и неутомимую киназу, провоцирующую постоянное деление клетки. А ген Кнудсона, Rb, осуществляет противоположное действие. Он подавляет клеточное деление. Лишь полное выведение такого гена из строя — двойной мутацией — приводит к бесконтрольному делению клетки. Таким образом, Rb является геном-супрессором рака, функциональной противоположностью src. Кнудсон назвал его антионкогеном.

«По всей видимости, — писал он, — в возникновении рака у детей ключевую роль играют два типа генов. Первый, онкогены, действует посредством повышенной, аномальной активности… Второй же класс, антионкогены (или супрессоры опухолей), в онкогенезе рецессивен: рак происходит лишь тогда, когда обе нормальные копии удалены или изменены. Некоторые люди обладают одной такой мутацией в зародышевой линии, а потому крайне подвержены раку: для его возникновения им требуется лишь одна соматическая мутация. Другие же дети, хотя и не имеют в зародышевой линии мутации, все равно заболевают раком в результате двух соматических мутаций».

Поразительно, что столь тонкая и изысканная гипотеза была сделана на основе одних статистических данных! Кнудсон не знал молекулярного воплощения вычисленных им антионкогенов, не смотрел на саму раковую клетку, пытаясь «увидеть» эти гены, не провел ни единого биологического эксперимента, охотясь за Rb. Подобно Менделю, он имел дело с генами лишь в статистическом смысле. По его собственным словам, он делал выводы об их существовании, «как делают вывод о ветре, глядя, как качаются деревья».

 

В конце 1970-х годов Вармус, Бишоп и Кнудсон начали описывать основные молекулярные нарушения раковых клеток, исследуя координированную работу онкогенов и антионкогенов. Гены рака, предположил Кнудсон, бывают двух разновидностей. «Положительные» гены, как, например, src, — это активированные версии нормальных клеточных генов. В нормальной клетке такие гены, получив соответствующий сигнал, способствуют клеточному делению. В мутантной же форме такие гены приходят в состояние постоянной гиперактивности, что влечет за собой бесконтрольное клеточное деление. Активированный протоонкоген, пользуясь сравнением Бишопа, подобен заевшей педали газа в машине. Клетка с такой заевшей педалью во весь опор несется по пути деления, не в силах прекратить митозы.

«Отрицательные» же гены, такие как Rb, напротив, подавляют клеточное деление. В нормальных клетках эти антионкогены, или гены-супрессоры опухолей, обеспечивают тормоза размножения, выключая деление, если клетка не получает нужного сигнала извне. В раковых клетках эти тормоза выведены из строя мутациями. Опять же используя сравнение Бишопа: если у клетки нет тормозов, она не реагирует на стоп-сигналы. Такая клетка тоже бесконтрольно делится, игнорируя сигналы прекратить деление.

Обе аномалии — активированный протоонкоген или инактивированный супрессор опухоли (заевшая педаль газа или неисправные тормоза) — представляют собой основные молекулярные дефекты раковых клеток. Бишоп, Кнудсон и Вармус не знали, много ли требуется подобных дефектов, чтобы спровоцировать рак у людей, однако постулировали, что причиной рака является сочетание некоторого количества таких генетических отклонений.

 







Date: 2015-11-13; view: 414; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию