Метод Рунге-Кутта 4 порядка
Тамбов, 2010
Цель работы: Нахождение приближенного решения системы обыкновенных дифференциальных уравнений методом Рунге-Кутта 3 и 4 порядка и сравнение полученных результатов с решением, полученным аналитически.
Теоретическая часть
Согласно методу Рунге – Кутта 3 порядка, последовательные значения искомой системы дифференциальных уравнений определяются по формуле:
, где




а последовательные значения искомой системы дифференциальных уравнений определяются по формуле:
, где 



Метод Рунге-Кутта 4 порядка
Согласно методу Рунге – Кутта 4 порядка, последовательные значения искомой системы дифференциальных уравнений определяются по формуле: ,
где





а последовательные значения искомой системы дифференциальных уравнений определяются по формуле: , где





Date: 2015-10-19; view: 368; Нарушение авторских прав | Понравилась страница? Лайкни для друзей: |
|
|