Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Первично активный транспорт
Первично активный транспорт - это перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, а также с помощью эндоцитоза, экзоцитоза и трансцитоза. В обоих случаях энергия расходуется непосредственно на перенос частиц. Насосы (помпы) представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Непосредственным источником энергии является АТФ. Достаточно хорошо изучены Na/К-, Са2+- и Н+-насосы. Есть основания предполагать наличие Сl- -насоса, о чем свидетельствует участие ионов Сl- в процессах торможения ЦНС, а также в возникновении возбуждения в клетках проводящей системы сердца и в клетках рабочего миокарда. Отсутствие хлорной помпы привело бы к исчезновению концентрационного градиента ионов Сl- в перечисленных клетках и нарушению процессов возбуждения и торможения в них, чего в реальной действительности не наблюдается. Насосы локализуются на клеточных мембранах или на мембранах клеточных органелл. Основными характеристиками мембранных насосов являются: - специфичность (селективность); - постоянная работа; Специфичность насосов (селективность) заключается в том, что они обычно переносят какой-то определенный ион или два иона. Например, Na/К-насос (объединенный насос для Nа+ и К+) не способен переносить ион лития, хотя по своим свойствам последний очень близок к натрию. Натрий-калиевый насос (Nа/К-АТФаза ) — это интегральный белок клеточной мембраны, обладающий, как и все другие насосы, свойствами фермента, т.е. сам переносчик обеспечивает расщепление АТФ и освобождение энергии, которую он же сам и использует. Этот насос изучен наиболее хорошо, он имеется в мембранах всех клеток и создает характерный признак живого — градиент концентрации Nа+ и К+ внутри и вне клетки, что обеспечивает формирование мембранного потенциала и вторичный транспорт веществ. Главными активаторами насоса являются гормоны (альдостерон, тироксин), недостаток энергии (кислородное голодание) ингибирует насос. Его специфическими блокаторами являются строфантины, особенно уабаин. Работа натриевого насоса после удаления К+ из среды сильно нарушается. Кальциевый насос (Са2+-АТФаза) локализуется в саркоплазматическом ретикулуме мышечной ткани, в эндоплазматическом ретикулуме других клеток, клеточной мембране. Насос обеспечивает транспорт Сa2+ и строго контролирует содержание Са2+ в клетке, поскольку изменение содержания Са2+ в ней нарушает функцию. Насос переносит Са2+ либо во внеклеточную среду, например, в клетках сердечной и скелетных мышц, либо в цистерны ретикулума и митохондрии (внутриклеточное депо Са2+). Протонный насос (Н+-АТФаза) имеется в мембране обкладочных клеток в желудке, где играет важную роль в выработке соляной кислоты; в почке он участвует в регуляции рН внутренней среды организма; этот насос постоянно работает во всех митохондриях. Постоянная работа насосов необходима для поддержания концентрационных градиентов ионов, связанного с ними электрического заряда клетки и движения воды и незаряженных частиц в клетку и из клетки вторично активно, в частности согласно законам диффузии и осмоса. Совокупность этих процессов обеспечивает жизнедеятельность клетки. В результате разной проницаемости. клеточной мембраны для разных ионов и постоянной работы ионных помп концентрация различных ионов внутри и снаружи клетки неодинакова. Поскольку ионы являются заряженными частицами, то существует электрический заряд клетки. Почти во всех изученных клетках внутреннее содержимое их заряжено отрицательно по отношению к внешней среде, т.е. внутри клетки преобладают отрицательные ионы, а снаружи — положительные. Преобладающими ионами в организме человека являются Na+, К+, Сl-, причем К+ находится преимущественно в клетке, а Na+ и Сl- — во внеклеточной жидкости. Внутри клетки находятся также крупномолекулярные (в основном белкового происхождения) анионы. Роль первичного транспорта в поддержании различной концентрации разных ионов легко доказать, например, в опыте с эритроцитами. Если с помощью цианида подавить дыхание эритроцитов, то их ионный состав начинает постепенно меняться: Nа+ и Сl- диффундируют через клеточную мембрану в эритроцит, К+ — из эритроцита. Но в норме за счет энергии, поставляемой процессом дыхания, идет их первичный транспорт в обратном направлении, благодаря чему и поддерживаются концентрационные градиенты. Более трети энергии АТФ, потребляемой клеткой в состоянии покоя, расходуется на перенос только Na+ и К+, т.е. на работу Na+/К.+-насоса. Это обеспечивает сохранение клеточного объема (осморегуляция), поддержание электрической активности в нервных и мышечных клетках, транспорт других веществ в различных клетках организма. Механизм работы ионных насосов.Nа+/К+-насос — молекула интегрального белка, пронизывающая всю толщу клеточной мембраны. Молекула имеет участок, который связывает либо Na+, либо К+, — это активный участок. При конформации Е1 белковая молекула активной своей частью обращена внутрь клетки и обладает сродством к Nа+, который присоединяется к белку, в результате чего активируется АТФаза, обеспечивающая гидролиз АТФ и освобождение энергии. Последняя обеспечивает конформацию молекулы белка: она превращается в форму Е2, в результате чего активный ее участок уже обращен наружу клеточной мембраны. Теперь белок теряет сродство к Na+, последний отщепляется от него, а белок-помпа приобретает сродство к иону К+ и соединяется с ним. Это ведет снова к изменению конформации переносчика: форма Е2 переходит в форму Е1, когда активный участок белка снова обращен внутрь клетки. При этом он теряет сродство к иону К+, и тот отщепляется, а белок приобретает снова сродство к иону Na+ — это один цикл работы помпы. Затем цикл повторяется. Насос является электрогенным, поскольку за один цикл выводится из клетки 3 иона Nа+, а возвращается в клетку 2 иона К+. На один цикл работы Na/К-насоса расходуется одна молекула АТФ, причем энергия расходуется только на перенос Na+. Подобным образом работают и Са-АТФазы сарко- и эндоплазматической сетей, а также клеточной мембраны, с тем лишь различием, что переносятся только ионы Ca2+ и в одном направлении — из гиалоплазмы в сарко- или эндоплазматический ретикулум, а также — наружу клетки. Кальциевый насос (Са-АТФаза) — молекула интегрального белка, также имеет активный участок, связывающий два иона Са2+, и может быть в двух конформациях — Е1 и Е2. В конформации Е1 активный участок молекулы белка обращен в гиалоплазму, обладает сродством к Са2+ и соединяется с ним. В результате насос переходит в конформацию Е1, когда активный участок молекулы белка обращен внутрь саркоплазматического ретикулума или наружу клетки. При этом уменьшается сродство белка к Са2+, последний отщепляется от него. В присутствии иона магния освобождается энергия АТФ, за счет которой молекула белка Са-АТФазы вновь переходит в конформацию Е1; цикл повторяется. Одна молекула АТФ переносит два иона Са2+. Эндоцитоз, экзоцитоз и трансцитоз (микровезикулярный транспорт) — это еще три вида первично-активного транспорта, близких по механизму друг к другу, посредством которых различные материалы переносятся через мембрану либо в клетку (эндоцитоз), либо из клетки (экзоцитоз), либо через клетку (трансцитоз). С помощью этих механизмов транспортируются крупномолекулярные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут транспортироваться по каналам или с помощью насосов. При эндоцитозе клеточная мембрана образует впячивания или выросты внутрь клетки, которые, отшнуровываясь, превращаются в пузырьки. Последние затем обычно сливаются с первичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу — внутриклеточному перевариванию. Продукты гидролиза используются клеткой. Различают два типа эндоцитоза — фагоцитоз (поглощение твердых частиц) и пиноцитоз — поглощение жидкого материала (раствор, коллоидный раствор, в том числе и белков, суспензия). Пиноцитоз характерен для амебоидных простейших и для многих других клеток, таких как лейкоциты, клетки зародыша, клетки печени и некоторые клетки почек, участвующие в водно-солевом обмене, в обмене белков: они обеспечивают пиноцитоз белков из первичной мочи в клетки проксимальных канальцев и их лизис. С помощью пиноцитоза новорожденные получают с молоком матери иммуноглобулины, которые через энтероциты попадают в кровь ребенка и выполняют свои защитные функции. Процесс эндоцитоза имеет место при всасывании веществ в желудочно-кишечном тракте. Экзоцитоз — процесс, обратный эндоцитозу; это наиболее распространенный механизм секреции. Таким способом различные материалы выводятся из клеток: из пресинаптических окончаний — медиатор, из пищеварительных вакуолей удаляются оставшиеся непереваренными частицы, а из секреторных клеток путем экзоцитоза выводится их жидкий секрет (слизь, гормоны, ферменты), из гепатоцитов — альбумины. Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки, образовавшиеся в рибосомах эндоплазматического ретикулума. Низкомолекулярные вещества (медиаторы, некоторые гормоны) попадают в везикулы преимущественно с помощью вторичного транспорта. Пузырьки транспортируются сократительным аппаратом клетки, состоящим из нитей актина, миозина и микротрубочек, к клеточной мембране, сливаются с ней, и содержимое клеток выделяется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного аппарата клетки. Процесс слияния везикул с клеточной мембраной активируется фосфолипидом лизолецитином и внутриклеточным Са2+. Например, поступление Са2+ в нервное окончание обеспечивает выделение медиатора через пресинаптическую мембрану в синаптическую щель. В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругооборот, рециркуляция): в течение каждого часа в процессе эндоцитоза в разных клетках используется от 3 до 100 % клеточной оболочки, но с такой же скоростью происходит ее восстановление в результате экзоцитоза. Трансцитоз сочетает в себе элементы эндо- и экзоцитоза: это перенос частиц через клетку, например, молекул белка в виде везикул — через эндотелиальную клетку капилляров на другую ее сторону. В этом случае эндоцитозные пузырьки не взаимодействуют с лизосомами. При этом пузырьки могут сливаться друг с другом, образуя каналы, пересекающие всю клетку. Date: 2015-10-19; view: 1170; Нарушение авторских прав |