Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Физический механизм молекулярного поглощения
Время релаксации. Для понимания дальнейшего мы должны теперь кратко напомнить некоторые основные сведения из молекулярно-кинетической теории. Если имеется сосуд с газом, то давление газа на стенки, так же как и давление одного слоя газа на другой слой, вызывается ударами молекул газа о стенку или друг о друга. Это давление, таким образом, пропорционально энергии поступательного движения молекул, т.е. их кинетической энергии. Энергия эта тем больше, чем выше температура газа; чем выше температура, тем с большей скоростью движутся молекулы газа. Если бы молекула газа представляла собой материальную точку, она имела бы, выражаясь языком механики, три степени свободы движения — в трех взаимно перпендикулярных друг к другу направлениях. Любое ее движение можно было бы разложить на составляющие по этим направлениям. Мы можем назвать эти три степени свободы внешними или поступательными степенями свободы молекулы; молекулы одноатомных газов — гелия, неона, аргона — можно при известных условиях считать материальными точками. По сложная молекула не представляет собой столь простой системы; грубо говоря, ее можно представить составленной из отдельных шариков, связанных между собой как бы упругими пружинками; например, в молекуле углекислого газа CO2, такими шариками являются углерод С и О2. Конечно, такое представление чрезвычайно упрощено, но для объяснения причины появления дисперсии и аномального поглощения оно достаточно. Каждая сложная молекула, кроме трех ее внешних (поступательных) степеней свободы, имеет еще внутренние степени свободы движений; атомы, входящие в состав молекулы, могут испытывать колебания друг относительно друга — колебательные степени свободы. Кроме того, такая молекула может также вращаться относительно своего центра инерции, т. е. она имеет еще вращательные степени свободы. Представим себе теперь, что в многоатомном газе, каким, например, является углекислый газ, распространяются ультразвуковые волны. Для простоты дальнейших рассуждений примем форму волны не синусоидальной, а прямоугольной. При быстром (адиабатическом) сжатии газа в момент времени t0, вызываемом ультразвуковой волной, вначале увеличивается энергия Ek поступательного движения молекул и, соответственно сказанному выше, возрастет давление р. Что произойдет после сжатия? Часть энергии поступательного движения молекул после ряда соударений между ними перейдет от внешних степеней свободы на внутренние степени свободы молекул. Обозначим внутреннюю энергию молекул через Еi,; мы можем сказать, что после сжатия Еi будет увеличиваться, тогда как Еk будет уменьшаться. Полная энергия Е складывается из энергии поступательного движения молекул Ek и внутренней энергии Еi: . Она остается неизменной вплоть до нового изменения объема. Так как давление р создается за счет Еk, то после сжатия оно также будет уменьшаться; конечно, давление будет больше, чем до момента, предшествовавшего сжатию, но оно будет меньше, чем сразу же после сжатия. Через некоторый промежуток времени установится новое состояние равновесия газа, испытавшего сжатие; температура его несколько повысится за счет сжатия, и установится новое распределение энергии между внешними и внутренними степенями свободы молекул. Во второй' полупериод волны, при разрежении, картина будет обратной; вначале энергия поступательного движения Еk резко уменьшится по сравнению с ее значением при равновесии, а затем в результате ряда соударений часть внутренней энергии Ei будет переходить в энергию внешних, поступательных степеней свободы движения, и Еk будет увеличиваться. Таково же будет и изменение давления; непосредственно после разрежения давление резко падает, а затем постепенно возрастает. Через некоторое время вновь установится положение равновесия, соответствующее состоянию разрежения. Здесь мы имеем один из примеров так называемых релаксационных процессов, играющих большую роль в физике. Релаксационные процессы — это такие процессы, которые стремятся перевести какую-либо систему в состояние равновесия. В качестве весьма грубого примера релаксирующей системы можно привести легкий маятник, помещенный в очень вязкую жидкость. Если маятник выведен из положения равновесия, то под действием силы тяжести он через некоторое время возвратится в положение равновесия; как говорят, отклонение маятника «релаксирует». Рассматриваемый нами случаи — передача энергии внешних степеней свободы в многоатомных газах на внутренние степени свободы под действием распространяющейся ультразвуковой волны — также представляет собой пример релаксационного процесса. Далее мы познакомимся с другими подобными процессами, разбирая вопрос о распространении ультразвуковых волн в жидкостях. Время, в течение которого отклонение Еk, Еi p от их равновесных значений увеличивается или уменьшается в е раз (т.е. в 2,7 раза), называется временем релаксации; мы обозначим его через . Эта важная величина характеризует время восстановления равновесного состояния как после сжатия, так и после разрежения газа, т.е. время перераспределения энергии между внешними и внутренними степенями свободы движения молекул газа. Если убывание Ek после сжатия происходит на величину , то время убывания Еk на есть время релаксации ; точно так же легко видеть, что после разрежения в момент t1 временем релаксации будет время возрастания Еk на величину . Максимальное изменение скорости звука происходит тогда, когда период звуковой волны Т совпадает с временем релаксации (т.е. на частоте ). Известна зависимость квадрата скорости звука от частоты (по горизонтальной оси отложен логарифм круговой частоты ), вытекающая из теории распространения звука в многоатомных газах; эта зависимость подтверждается экспериментальными данными. Для углекислого газа дисперсия имеет место при частоте , приблизительно равной 105 гц; при t = 18°С и нормальном атмосферном давлении время релаксации для углекислого газа оказывается равным примерно 5×106 сек. На этом же рисунке внизу приведен ход кривой поглощения ультразвука в зависимости от частоты. Вместо коэффициента поглощения по оси ординат отложена величина , характеризующая ослабление амплитуды на протяжении одной длины волны. Как же объяснить аномальное поглощение, которое испытывают ультразвуковые волны при тех частотах, где имеется дисперсия? Легко видеть, что за полный период волны Т совершится замкнутый цикл. Но это значит, что элемент газа совершит работу, которая может пойти только на нагревание газа. Действительно, из механики мы знаем, что когда материальная точка под действием силы F проходит малое расстояние l в направлении силы, то производимая этой силой работа будет Fl. В нашем случае силой является давление, действующее на площадь поверхности элемента объема газа S: . Если под действием давления поверхность S элемента объема переместится на расстояние, то тогда работа А будет равна: . На диаграмме работа изобразится площадью, лежащей под отрезками 1 – 2 и 3 – 4. Разность этих площадей, т.е. площадь замкнутого цикла, представляет поэтому работу, производимую элементом объема газа. Эта работа совершается за счет энергии звуковой волны и идет на нагревание газа, чем вносится добавочное поглощение звука. Таким образом, благодаря перераспределениям энергии между внешними и внутренними степенями свободы молекул в многоатомных газах, происходящим из-за сжатий и разрежений, вызываемых звуковыми волнами, возникает поглощение звука. Это поглощение называют молекулярным поглощением. Максимум молекулярного поглощения совпадает с максимумом дисперсии, т. е. имеет место при частоте ультразвука (период звуковой волны совпадает с временем релаксации ). Дисперсия ультразвука в многоатомных газах. Мы говорили выше, что кинетическая энергия движения молекул газа пропорциональна температуре; чем выше температура газа, тем с большей скоростью движутся молекулы. Теплоемкость при постоянном объеме есть количество тепла, необходимое для того, чтобы нагреть молярный объем газа на 1°С, поддерживая объем постоянным. Поэтому есть не что иное, как приращение энергии объема газа при изменении температуры на 1°С. Подобно тому как полная энергия Е представляет собой сумму энергий внешних степеней свободы Еk, (энергия поступательного движения молекул) и внутренних степеней свободы Ei (энергия колебательных и вращательных движений молекул), так и теплоемкость будет суммой теплоемкостей — внешних и — внутренних степеней свободы молекул объема, занимаемого одним молем: . При низких частотах звуковых волн процесс сжатий и разрежений элемента объема газа происходит настолько медленно, что установление равновесия между возбужденными и невозбужденпыми молекулами успевает следовать за колебаниями давления в звуковой волне; время релаксации - гораздо меньше периода звуковой волны . В этом случае скорость звука определяется известной нам формулой . Между и , имеется важное соотношение: - = R, где R — некоторая постоянная величина, называемая газовой постоянной. Поэтому формулу для скорости звука можно переписать в таком виде: или, вспоминая смысл для многоатомных газов: . (Вместо с мы написали с0, чтобы подчеркнуть, что эта формула справедлива для низких частот.) Если же частоты ультразвуковых волн очень высоки, то установление равновесия между внешними и внутренними степенями свободы молекул не успевает происходить; время релаксации г гораздо больше, чем период звуковой волны T (), и внутренние степени свободы молекул не будут возбуждаться. Тогда = 0, и скорость звука будет определяться формулой . (Здесь скорость мы обозначаем через , чтобы подчеркнуть, что эта скорость относится к случаю очень высоких частот.) Сравнивая формулы для скорости звука при низких частотах с0 со скоростью звука на очень высоких частотах , мы видим, что больше с0. Выражение для скорости звука можно записать в виде , где - адиабатическая сжимаемость. Так как и , то больше и можно сказать, что скорость звука увеличивается на очень высоких частотах потому, что уменьшается сжимаемость газа. Газ будет тем менее сжимаемым, чем быстрее происходит процесс сжатия. Итак, скорость звука в многоатомных газах изменяется от с0 на низких частотах до на очень высоких частотах. Область этого изменения и есть область дисперсии. Аномальное поглощение звука во влажном воздухе. Затухание звука в воздухе, как оказалось, в сильной степени зависит от его влажности. Объяснение этого явления сводится к учету релаксационного поглощения, связанного с наличием водяного пара. Коэффициент поглощения а, согласно экспериментальным данным, зависит от частоты звука и от влажности воздуха. Далее приведены экспериментальные кривые для различных звуковых частот при температуре 20°С в зависимости от относительной влажности воздуха, полученные американским акустиком В. Кнудсеном. Как видно из этого рисунка, максимум поглощения имеет место при весьма небольшой относительной влажности (10—20%); поглощение возрастает при увеличении частоты. Заметим, что влияние влажности на распространение звука играет некоторую рель в архитектурной акустике, уменьшая время реверберации помещений. Исследования молекулярного поглощения и дисперсии многоатомных газов принадлежат большой области современного учения о звуке — молекулярной акустике — и имеют важное значение для выяснения строения молекул.
Date: 2015-10-18; view: 777; Нарушение авторских прав |