Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Технология сварки данной конструкции





Для данной конструкции я выбираю ручною дуговою сварку покрытыми электродами. Ниже привожу принципы процесса, характеристики дуги:

К электроду и свариваемому изделию для образования и поддержания сварочной дуги от источников сварочного тока подводится постоянный или переменный сварочный ток. Дуга расплавляет металлический стержень электрода, его покрытие и основной металл как показано на (Рис. 1). Расплавляющийся металлический стержень электрода в виде отдельных капель, покрытых шлаком, переходит в сварочную ванну. В сварочной ванне электродный металл смешивается с расплавленным металлом изделия (основным металлом), а расплавленный шлак всплывает на поверхность.

Глубина, на которую расплавляется основной металл, называется глубиной проплавления. Она зависит от режима сварки (силы сварочного тока и диаметра электрода), пространственного положения сварки, скорости перемещения дуги по поверхности изделия (торцу электрода и дуге сообщают поступательное движение вдоль направления сварки и поперечные колебания), от конструкции сварного соединения, формы и размеров разделки свариваемых кромок и т. п. Размеры сварочной ванны зависят от режима сварки и обычно находятся в пределах: глубина до 7 мм, ширина 8—15 мм, длина 10—30 мм. Доля участия основного металла в формировании металла шва обычно составляет 15—35%.Рис.1 Схема ручной электродуговой сварки

Рис.1 Схема ручной электродуговой сварки.

Расстояние от активного пятна на расплавленной поверхности электрода до другого активного пятна дуги на поверхности сварочной ванны называется длиной дуги. Расплавляющееся покрытие электрода образует вокруг дуги и над поверхностью сварочной ванны газовую атмосферу, которая, оттесняя воздух из зоны сварки, препятствует взаимодействиям его с расплавленным металлом. В газовой атмосфере присутствуют также пары основного и электродного металлов и легирующих элементов. Шлак, покрывая капли электродного металла и поверхность расплавленного металла сварочной ванны, способствует предохранению их от контакта с воздухом и участвует в металлургических взаимодействиях с расплавленным металлом.

Кристаллизация металла сварочной ванны по мере удаления дуги приводит к образованию шва, соединяющего свариваемые детали. При случайных обрывах дуги или при смене электродов кристаллизация металла сварочной ванны приводит к образованию сварочного кратера (углублению в шве, по форме напоминающему наружную поверхность сварочной ванны). Затвердевающий шлак образует на поверхности шва шлаковую корку.

Длина дуги зависит от марки и диаметра электрода, пространственного положения сварки, разделки свариваемых кромок и т. п. Нормальная длина дуги считается в пределах Lд = (0,5 — 1,1) dэл (dэл — диаметр электрода). Увеличение длины дуги снижает качество наплавленного металла шва ввиду его интенсивного окисления и азотирования, увеличивает потери металла на угар и разбрызгивание, уменьшает глубину проплавления основного металла. Также ухудшается внешний вид шва.

Для возбуждения дугового разряда при сварке для получения начальной ионизации обычно сводят два электрода до соприкосновения (электрод и деталь), а затем быстро их разводят. При достаточно большом токе при соприкосновении электродов в промежутке между концами электродов выделяется большое количество тепла. Ток между электродами проходит через мелкие неровности на торцах и разогревает их до расплавления. При быстром разведении электродов расплавленные мостики растягиваются и сужаются, вследствие чего плотность тока доходит в них в момент разрыва до такой величины, что обращает их в пар. При высокой температуре паров металла ионизация промежутка получается настолько значительной, что при сравнительно небольшой разности потенциалов между концами электродов возникает дуговой разряд. Разряд поддерживается далее как устойчивая стационарная дуга в том случае, если сохраняются факторы, поддерживающие ионизацию дугового промежутка.

В момент зажигания дуги промежуток еще недостаточно нагрет и для его ионизации необходима увеличенная кинетическая энергия, которая может быть получена усилением электрического поля, т. е. некоторым повышением напряжения между электродами сравнительно с тем напряжением, которое требуется для поддержания дуги в установившемся состоянии.

Периоду поджига сварочной дуги и выхода её на режим стабильного горения соответствует Участок I на статической ВАХ сварочной дуги - участок опережающего роста электропроводности плазмообразующего газа в столбе сварочной дуги.


 

Распределение и влияние температуры

При ручной дуговой сварке существенным является распределение температур по длине сварочного электрода и распределение температур в основном металле (изделии). Распределение температур в изделии может быть рассчитано, как правило, по схеме Рыкалина - подвижный точечный источник нагрева.

Характеризуется термическими циклами, температурными кривыми, изотермами.

В участке основного металла, прилегающем к шву, температура близка к температуре плавления. При удалении от шва температура интенсивно снижается, приближаясь к средней температуре свариваемого изделия.

Таким образом, в околошовной зоне металл подвергается своеобразной термообработке. Отсюда эта зона называется зоной термического влияния. Структура металла в зоне термического влияния изменяется в соответствии с термическим циклом нагрева и охлаждения, зависит от химического состава металла, предшествующей термической и механической обработки.

Рассмотрим, какие структурные превращения происходят в зоне термического влияния при сварке малоуглеродистых сталей (рис.2).

рис.2

В пределах шва металл был нагрет до расплавления, и поэтому после затвердения имеет в основном дендритную (литую) структуру.

Непосредственно к сварному шву прилегает участок неполного расплавления. На участке I (участок перегрева) металл был нагрет от 1370 до 1770° К (от 1100 до 1500° С), и поэтому имеет крупнозернистую структуру с игольчатыми включениями феррита. Это участок перегрева, а структуру металла в нем называется видманштедтовой.

Участок II (участок нормализации) характерен тем, что металл был нагрет до интервала от критической точки Ас3 до 1370° К (1100° С). В связи с тем, что охлаждение происходило на воздухе, металл в этом участке претерпел нормализацию и значит, отличается мелкозернистой структурой.

В участке III (участок неполной перекристаллизации) металл нагревается до интервала температур от критической точки Ac1, до Ас3 Нагрев до таких температур приводит к неполной перекристаллизации, а поэтому в пределах этого участка есть мелкие зерна перлита некрупные зерна феррита, т. е. структура характерна геометрической неоднородностью.

В пределах участка IV (участок рекристаллизации) металл нагревается до температур от 770° К (550° С) до критической точки Ас1 что приводит к рекристаллизации. В результате этого вытянутые зерна основного металла, если это был стальной прокат, приобретают гло булярную форму, а размеры зерен увеличиваются.

Участок V (участок синеломкости) - видимых изменений в структуре металла сварного шва не происходит. Отличается цветами побежалости.

Из рассмотренных участков особое внимание должно уделяться участку с видманштедтовой структурой. Он вследствие перегрева имеет крупное зерно и обладает понижен ной прочностью. Сварку следует выполнять так, чтобы участок перегрева был минималь ный. Наиболее высокие механические свойства на участке нормализации, в пределах кото рого металл имеет однородную мелкозернистую структуру.

Если выполняется сварка среднеуглеродистых и некоторых низколегированных сталей (45, 40Х, ЗОХГСА и др.), в околошовной зоне возможно образование закалочных структур. Это называется подкалкой и приводит к повышению твердости, возникновению внутренних напряжений, а иногда к образованию трещин. В таких случаях сварку целесообразно выполнять с термическим циклом, характерным медленным нагревом и охлаждением металла.


При сварке аустенитных хромоникелевых сталей в околошовной зоне из твердого рас твора могут выпадать комплексные карбиды хрома и железа. Это явление нежелательное, так как приводит к обеднению аустенита (твердого раствора) хромом и тем самым повышает склонность к межкристаллитной коррозии; поэтому сварка таких сталей выполняется на ре жимах, при которых обеспечивается минимальная длительность пребывания металла околошовной зоны в интервале высоких температур.

Нагрев электрода определяется двумя составляющими: нагрев проходящим током и нагрев сварочной дугой.

Влияние нагрева электрода теплом сварочной дуги имеет решающее значение с точки зрения обеспечения плавления электрода, но сточки зрения нагрева нерасплавившейся части, проявляется на расстоянии до 15 мм от торца электрода (что очень важно с точки зрения транспорта компонентов электродного покрытия в сварочную дугу)

Нагрев стержня электрода проходящим током тем больше, чем дольше протекание по стержню сварочного тока и чем больше величина последнего. Перед началом сварки ме таллический стержень имеет температуру окружающего воздуха, а к концу расплавления электрода температура повышается до 500—600° С (при содержании в покрытии органиче ских веществ - не выше 250° С). Это приводит к тому, что скорость расплавления электрода (количество расплавленного электродного металла) в начале и конце различна. Изменяется и глубина проплавления основного металла ввиду изменения условий теплопередачи от дуги к основному металлу через прослойку жидкого металла в сварочной ванне. В результате изменяется соотношение долей электродного и основного металлов, участвующих в обра зовании металла шва, а значит, и состав и свойства металла шва, выполненного одним электродом. Это - один из недостатков ручной дуговой сварки покрытыми электродами.

Основные режимы сварки для электродов различных диаметров приведены в таблице 1.

Таблица 1.







Date: 2015-10-22; view: 569; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию