Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Электромеханические реле времени





 

В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени.Общими требованиями для реле времени являются:

а) стабильность выдержки времени при колебаниях напряжения,
частоты питания, температуры окружающей среды и воздействии других
факторов;

б) малые потребляемая мощность, масса и габариты.

Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.

В зависимости от назначения к реле времени предъявляются раз­личные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высо­кой механической износостойкостью - до (5-10)-106 срабатываний. Требуемые выдержки времени находятся в пределах 0,25-10 с. К этим реле не предъявляются требования относительно высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10 %. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.

Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостой­кость реле времени защиты порядка (5-10)-103 срабатываний. Выдержки времени таких реле составляют 0,1-20 с.

Для автоматизации технологических процессов необходимы реле с большой выдержкой времени - от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени.

Увеличение времени срабатывания или отпускания можно достичь воздействием на время трогания и времени движения до момента замыкания или размыкания. Увеличение времени трогания возможно двумя способами: электрическим или магнитным. При электрическом методе реле включают в схемы (рис. 1.4), изменяющие скорость нарастания или спадания тока в его обмотке.

При магнитном методе замедление достигается с помощью различных медных втулок, коротко замкнутых витков и т. п., уменьшающих скорость нарастания или спадания тока в обмотке реле. Втулки или коротко-замкнутые витки насаживают непосредственно на сердечники под обмотку или рядом с ней, у конца пли начала сердечника.

Втулки, надетые на конце сердечника, увеличивают в основном время срабатывания, а надетые на основание - время отпускания.

Для увеличения второй составляющей (времени движения) обычно применяют воздушные и масляные демпферы или часовые механизмы.

Рассмотрим электрические методы замедления срабатывания и от­пускания реле.

 

 

а б в г

Рис. 1.4. Электрические методы образования реле времени

 

На рис. 1.4, а показана схема замедления срабатывания реле с ис­пользованием лампы накаливания, включенной параллельно обмотке реле и добавочного резистора R. В холодном состоянии лампа имеет небольшое сопротивление, поэтому при замыкании ключа К в цепи лампы будет протекать большой ток, на резисторе R будет большое падение напряжения и, следовательно, малое напряжение па обмотке реле.

По мере разогрева нити лампы током сопротивление ее уве­личивается, растет напряжение на обмотке реле, и оно срабатывает с за­медлением.

На рис. 1.4, б показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором С. В этом случае при замыкании ключа К заряд конденсатора происходит по времени. Напряжение заряда конденсатора постепенно возрастает, а время срабатывания реле увеличивается. Эта схема тоже увеличивает время отпускания реле, так как якорь некоторое время остается притянутым за счет энергии, накопленной в конденсаторе.

На рис. 3, в показана схема замедления отпускания реле. После размыкания ключа К через обмотку реле и диод VD некоторое время протекает ток, созданный за счет ЭДС самоиндукции обмотки реле. Этот ток постепенно уменьшается, и реле отключается с замедлением.

В схеме (рис.1,4, г) время отпускания реле увеличивается за счет того что при размыкании ключа К в цепи, состоящей из обмотки реле, кон­денсатора С и резистора R некоторое время сохраняется ток разряда кон­денсатора. Чтобы переходной процесс в этой цепи имел апериодический характер, применяют достаточно большой емкости конденсатор и большой величины резистор R.


Работа реле времени с магнитными демпферами осуществляется следующим образом. При появлении тока в рабочей обмотке реле начинает нарастать магнитный поток в сердечнике. Изменение магнитного потока обусловливает появление в короткозамкнутой обмотке (втулке) ЭДС, под действием которой образуется ток, создающий, в свою очередь, магнитный поток. Новый магнитный поток направлен противоположно магнитному потоку рабочей обмотки и поэтому замедляет скорость увеличения резуль­тирующего потока в рабочем зазоре. Если короткозамкнутая обмотка (втулка) расположена на конце сердечника, то при подаче питания на реле магнитный поток, образуемый токами во втулке, направлен навстречу основному потоку рабочей обмотки и как бы отталкивает его из рабочего зазора. В результате возрастают потоки рассеяния в сердечнике и у основания, а поток в рабочем зазоре сильно ослабляется.

Таким образом, усиливается влияние короткозамкнутой обмотки на время срабатывания реле (одновременно увеличивался время отпускания).

С помощью магнитного демпфирования можно получить выдержку времени при срабатывании реле 0,1- 0,3 с.

Большие выдержки времени получить невозможно, так как нарастание магнитного потока происходит при большом зазоре между якорем и сердечником. Это определяет индуктивность системы, а следовательно, быстрый рост магнитного потока.

Магнитное демпфирование удобно применять для замедления от­пускания реле, так как спад магнитного потока происходит при малом ра­бочем зазоре, т. е. при большой индуктивности системы, что определяет ее большую инерционность и позволяет получить выдержку времени от 0,2 до 10 с.

Для увеличения времени отпускания реле короткозамкнутую обмотку (втулку) располагают у основания сердечника.

При подаче питания на обмотку реле магнитный поток, образуемый током во втулке, смещает результирующий магнитный поток системы к рабочему зазору, поэтому втулка меньше влияет на время срабатывания реле. включения реле. Время срабатывания реле с электромагнитным замедлением очень мало, так как постоянная времени мала из-за большого начального рабочего зазора, и трогание реле происходит при малом значении МДС обмотки. МДС трогания значительно меньше установившегося значения. Это время составляет 0,05-0,2с при наличии короткозамкнутого витка и 0,02-0,05с при его отсутствии. Таким образом, возможности электромагнитного замедления при срабатывании весьма ограничены. Поэтому используются специальные схемы включения электромагнитных реле (рис. 1.5).

Если необходима большая выдержка времени при замыкании конактов, то целесообразна схема с промежуточным реле К (рис. 1.5, а). Обмотка реле времени КТ все время подключена к напряжению через размыкающий контакт реле К. При подаче напряжения на обмотку К последнее размыкает свой контакт и обесточивает реле КТ. Якорь КТ отпадает, и его размыкающие контакты срабатывают с необходимой выдержкой времени, обусловленной временем срабатывания реле К и временем отпускания реле КТ. В схеме (рис. 1.5, б) роль короткозамкнутого витка играет сама намагничивающая обмотка, которая питается через резистор Rдоб. Напряжение, приложенное к обмотке, должно быть достаточным для насыщения магнитной цепи при притянутом якоре. При замыкании управляющего контакта 5 обмотка реле закорачивается и обеспечивается медленный спад потока в магнитной цепи. Отсутствие специальной короткозамкнутой обмотки позволяет все окно магнитопровода занять намагничивающей обмоткой и создать большой запас по МДС. При этом выдержка времени неизменна при снижении питающего напряжения на обмотке до 0,5 U hom. Такая схема широко применяется в электроприводе. Обмотка реле включается параллельно ступени пускового реостата в цепи якоря. При закорачивании этой ступени обмотка реле замыкается, а его контакты с выдержкой времени включают контактор, шунтирующий следующую ступень пускового реостата.


Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка. При включении обмотки ток через вентиль практически равен нулю. При этом через вентиль протекает ток, определяемый этой ЭДС, активным сопротивлением обмотки и вентиля и индуктивностью обмотки.

Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление коротко-замкнутой цепи), оно должно быть на один-два порядка ниже сопротивления обмотки.

При любых схемах обмотки реле питаются от источника либо по­стоянного, либо переменного тока с мостовой схемой выпрямления.

Реле времени с электромагнитным замедлением.

Конструкция реле с таким замедлением типа РЭВ-800 (рис.1.6) содержит П-образный магнитопровод 1 и якорь 2 с немагнитной прокладкой 3. Маг-нитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.

На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10, которая фик­сируется шплинтом.

Для получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы. С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный коротко-замкнутый виток, увеличивающий выдержку времени. У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Фост, который определяется свойствами материала магнитопровода, геометрическими размерами магнитной цепи и магнитной проводимостью рабочего зазора. Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи и магнитной проводимости рабочего зазора, тем ниже остаточная индукция, а следовательно, и остаточный поток. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле.


Применение стали с низким значением Нс позволяет увеличить выдержку времени.

Для получения большой выдержки времени материал магнитопровода должен иметь высокую магнитную проницаемость на ненасыщенном участке кривой намагничивания.

Регулирование выдержки времени. Время срабатывания реле можно плавно регулировать с помощью возвратной пружины 9 (рис. 1.6.) С увеличением сжатия этой пружины увеличивается электромагнитное усилие, необходимое дня трогания якоря и определяемое потоком в магнитной цепи. При большем сжатии пружины поток трогания возрастает. Следовательно, возрастает время трогания.

При разомкнутой магнитной цепи постоянная времени обмотки мала и максимальная выдержка времени также незначительна (около 0,2 с). Выдержка времени значительно увеличивается, если поток трогания близок к установившемуся значению. Однако в этом случае реле работает на пологой части кривой O(t). что вызывает большие разбросы времени срабатывания.

Для получения выдержки времени 1 с и более, необходимо исполь­зовать отпускание якоря. Регулировка выдержки реле при отпускании мо­жет производиться плавно и ступенчато (грубо).

Плавное регулирование выдержки времени производится изменением усилия пружины 11 (рис. 1.6). Эта пружина верхним концом упирается в шайбу 14, которая удерживается шпилькой 15, ввернутой в якорь реле. Нижний конец пружины посредством специальной пластины 16 передает силу через два латунных штифта 12, которые могут свободно перемещаться в отверстиях якоря. Оси латунных штифтов 12 смещены относительно оси пружины. В притянутом положении якоря 2 штифты 12 перемещаются вверх и пружина 11 дополнительно сжимается. Пружина 11 создает основную силу, отрывающую якорь от сердечника. Начальное сжатие пружины изменяется с помощью гайки 13. С увеличением силы пружины 11 электромагнитное усилие, при котором происходит отрыв якоря, увеличивается и возрастает поток отпускания Фотп. При этом время отпускания уменьшается (рис.1.7.). Чем меньше сила пружины, тем больше выдержка времени. Следует отметить, что при Фотп близком к Фост якорь реле вообще может не отпадать от сердечника.

Возвратная пружина 9 регулируется так, чтобы обеспечить необхо­димое нажатие размыкающих контактов реле и четкий возврат якоря в по­ложение, показанное на рис. 1.6.(после того как якорь оторвется от сердеч­ника).

Грубое регулирование выдержки времени осуществляется изменением толщины немагнитной прокладки 8. Поскольку при притянутом якоре магнитная цепь насыщена, толщина немагнитной прокладки мало сказывается на установившемся потоке. С уменьшением толщины немагнитной прокладки < растет индуктивность катушки при ненасыщенном магнитопроводе и уменьшается скорость спадания магнитного потока. В результате при неизменном усилии пружины 11 (рис.1.6.) выдержка времени увеличивается (рис.1.8.).

Толщину немагнитной прокладки не рекомендуется брать менее 0,1мм. В противном случае при повторно-кратковременном режиме работы якорь расклепывает немагнитную прокладку и толщина ее уменьшается, что ведет к изменению выдержки времени. При толщине прокладки более 0,1мм этим явлением можно пренебречь.

Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и изно­состойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1-0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.

Поток в магнитопроводе нарастает с постоянной времени Тк, опре­деляемой параметрами короткозамкнутого витка LK /Rk.

Если перегрузка кратковременна и ее длительность tПEP<tсp, то поток к моменту tПEP не достигнет значения потока срабатывания и якорь останется неподвижным. Если tПEP>tсp, то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.

Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3-5 с. Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.

Реле времени с механическим замедлением

Реле с пневматическим замедлением. В таких реле электромагнит постоянного или переменного тока воздействует на контактную систему через замедляющее устройство в виде пневматического демпфера. Выдержка времени меняется при регулировке этого устройства. Преимуществом такого реле является возможность питания как переменным, так и постоянным током и независимость от напряжения и частоты питания, температуры. Пневматическое реле РВП, применяемое в схемах электропривода станков и других механизмов, показано на рис. 1.9. При срабатывании электромагнита 1 колодка 2 под действием пружины опускается и воздействует на микропереключатель 4. Колонка 2 свя: зана с резиновой диафрагмой 5 пневма­тического замедлителя. Скорость движения колодки определяется сечением отверстия, через которое засасывается воздух в верхнюю полость замедлите­ля. Выдержка времени регулируется иглой 6, меняющей сечение этого отверстия. Контактная система 7 срабатывает без выдержки времени.

Реле с пневматическим замедлением позволяет регулировать выдержку времени в диапазоне от 0,4 до 180с с точностью ±10 %. Контактная система микропереключателя допускает длительный ток ЗА, ток отключения 0,2 А при переменном напряжении 380 В

Рис. 1.9. Реле времени с пневматическим замедлением.  

 

В замедлителях в виде анкерного механизма его пружина заводится под воздействием электромагнита. Контакты реле приходят в движение лишь после того, как связанный с ними анкерный механизм отсчитает определенное время уставки.

Выдержка времени у этих реле регулируется в пределах от 7 до 17с с точностью ±10% уставки. В реле имеются и нерегулируемые контакты, которые связаны с якорем электромагнита и используются в цепях, не требующих выдержки времени. Реле надежно работают при напряжении питания до 0,85 Uhom. Так как износостойкость анкерного механизма составляет всего 15000 срабатываний, такие реле не применяются при частых включениях. Моторные реле. Для создания выдержки времени 20-30 мин исполь­зуются так называемые моторные реле времени, в состав которых входит электродвигатель с заданной частотой вращения. Промышленностью выпус­каются большие серии этих реле на выдержки времени от 1 с до 26 мин и с различным исполнением контактов

.

Начальное положение кулачка

при обесточенном реле

Рис. 1.10. Моторное реле времени

 

  Рис. 1.11. Кинематическая схема реле времени ЭВ-215  

На рис. 1.10 показано устройство моторного реле. Для пуска реле подается напряжение на электромагнит 1 и двигатель 2. С помощью рычага 12 электромагнит без выдержки времени включает муфту 3, 4 и замыкает выходной контакт 5. Через муфту и зубчатую передачу 6 двигатель начинает вращать диски 7 с кулачками 8 и 9, воздействующими на промежуточные кулачки 10 и 11 и выходные контакты 16 и 13. При соприкосновении кулачков 8 и 10 последний поворачивается против часовой стрелки и дает возмож­ность контактной пластине 14 опуститься вниз под действием силы упругости. При этом контакт 16 размыкается. При соприкосновении кулачков 9 и 11 последний поворачивается и освобождает пластину 15, что вызывает замыкание контакта 13. Выдержка времени работы контактов 16 и 13 регулируется путем изменения начального положения дисков 7. При снятии напряжения с реле диски 7 поворачиваются в начальное положение с помощью спираль­ной возвратной пружины 17.

Точность работы реле ± 5 с. Реле позволяет устанавливать различую выдержку времени в пяти независимых цепях. Выходные контакты реле допускают длительный ток 10 А и при переменном токе могут отключать нагрузку мощностью 800 ВА при напряжении 220 В и 100 Вт при том же напряжении и индуктивной нагрузке постоянного тока. Допустимые колебания напряжения составляют (0,9-1,12) Uном . Износостойкость не менее 1000 циклов. Время возврата не более 1 с.

Реле времени часового (анкерного) механизма. Реле времени предназначено для замедления действия МТЗ с целью обеспечения селективности или избирательности её действия, заключающегося в отключении к ближайшему месту повреждения сети выключателя. Устройство электромагнитного реле времени типа

ЭВ-215 с анкерным часовым механизмом показано на рис. 1.11.

При подаче напряжения на катушку 1 её сердечник втягивается, сжимает пружину 2 и освобождает рычаг 3. Под действием пружины 6 зубчатый сектор 5 поворачивается на оси 4 по часовой стрелке. Шестерня 7 и подвижный контакт 9 будут вращаться в противоположную сторону. Постоянная скорость вращения контакта обеспечивается часовым механизмом 8. Через некоторое время (временя выдержки) контакт 9 замкнет неподвижные контакты 10. Регулируют выдержку времени изменением длины прохождения пути контакта 9 за счет перемещения контактов 10 по шкале выдержек 12, к которой они крепятся винтом 11. Кроме контактов, замыкающихся с выдержкой времени, реле имеет вспомогательные контакты 13,14 мгновенного действия.

Изображение катушки реле времени КТ и его контактов (замыкающего с выдержкой времени при замыкании КТ. 1 размыкающего с выдержкой времени при размыкании КТ.2) показаны на рис. 1.11. В общем случае направление выдержки времени на изображаемом контакте совпадает с направлением «рожек» дуги («рожки» препятствуют движению контакта).

 

 







Date: 2015-09-24; view: 2895; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.02 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию