Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Группы - вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы





Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns- и np- подуровнях.

Побочные подгруппы состоят из элементов только больших периодов. Их валентные электроны находятся на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

В зависимости от того, какой подуровень (s-, p-, d- или f-) заполняется валентными электронами, элементы периодической системы подразделяются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

В главных подгруппах сверху вниз металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп сильно отличаются по свойствам.

Номер группы показывает высшую валентность элемента (кроме O, F, элементов подгруппы меди и восьмой группы).

Общими для элементов главных и побочных подгрупп являются формулы высших оксидов (и их гидратов). У высших оксидов и их гидратов элементов I - III групп (кроме бора) преобладают основные свойства, с IV по VIII - кислотные. Для элементов главных подгрупп общими являются формулы водородных соединений. Элементы главных подгрупп I - III групп образуют твердые вещества - гидриды (водород в степени окисления - 1), а IV - VII групп - газообразные. Водородные соединения элементов главных подгрупп IV группы (ЭН4) - нейтральны, V группы (ЭН3) - основания, VI и VII групп (Н2Э и НЭ) - кислоты.

От положения элементов в периодической системе зависят свойства атома, связанные с его электронной конфигурацией: атомный радиус - по периоду слева направо уменьшается, а в подгруппе сверху вниз возрастает; энергия ионизации - по периоду возрастает, а в подгруппе уменьшается; электроотрицательность - по периоду увеличивается, а в подгруппе уменьшается.

8.Периодичность изменения свойств элементов означает, таким образом, повторный возврат к тем же в основном признакам (к металлическим свойствам щелочных, щелочноземельных, земельных и других металлов, к неметаллическим свойствам элементов групп фосфора, серы и хлора), которые уже встречались в предыдущем периоде и повторяются на известной ступени, через определенное число элементов в последующих периодах в строго закономерной последовательности. Как уже было сказано выше, эта периодичность представляет собой конкретное проявление одного из основных законов диалектики - закона отрицания отрицания. [1]Закон периодичности - периодическое изменение строения электронной оболочки определяет периодичность изменения свойств элементов. [2]Спустя четыре года Флавицкий выступил с новой трактовкой периодической системы элементов и оригинальным объяснением причины периодичности изменения свойств элементов, расположенных по величине их атомного веса. [3]Поскольку орбитали атомов заполняются сначала по одному, а затем по второму электрону, на фоне общей периодичности изменения свойств элементов в периодах проявляется еще так называемая вторичная периодичность. Последняя проявляется также и в подгруппах элементов. [4]Закон периодичности - закон, на котором основана периодическая система элементов: периодическое изменение строения электронной оболочки определяет периодичность изменения свойств элементов. [5]В химии наиболее глубоко и разносторонне связь строения атомов и свойств химических элементов отражает периодический закон. Сама периодичность изменения свойств элементов в свете современного учения о строении вещества рассматривается с точки зрения электронной структуры и размеров их атомов. Современная формулировка периодического закона говорит, что свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов. [7]Согласно современным представлениям, периодичность изменения свойств элементов, расположенных в порядке возрастания заряда ядра (атомного номера элемента), обусловлена периодичностью изменения в строении электронной оболочки атомов. [8]Согласно современным представлениям, периодичность изменения свойств элементов, расположенных в порядке возрастания заряда ядра (атомного номера элемента), обусловлена периодичностью изменения в строении электронной оболочки атомов. [10]Для приготовления сплавов необходимо хотя бы приблизительно знать действительные численные характериеп ки элементов. В настоящее время открытый Д. И. Менделеевым зако: периодичности изменения свойств элементов формулируется та свойства элементов находятся в периодической зависимости т заряда ядер их атомов. Однако судить о свойствах элемен 5, а тем более о качествах, которые они сообщают сплавам, положению элемента в таблице периодической системы мо /, о только приближенно. [11]Этим была поставлена задача уточнения атомных масс указанных элементов, и для некоторых из них атомные массы были исправлены. Первоначально казалось, что открытие благородных газов нарушит периодичность изменения свойств элементов, однако затем были открыты остальные благородные газы, которые хорошо вписались в периодическую систему. [12]Прежде всего установление периодического изменения электронных структур атомов дает объяснение самому закону Менделеева - периодичности изменения свойств элементов с ростом порядкового номера. [13]Менделеев не случайно говорил в фарадеевской лекции о необходимости усовершенствовать периодический закон. Вполне уверенный в его правильности и огромном значении, ученый ощущал неудовлетворенность от невозможности ответить в то время на вопрос о причинах периодичности изменения свойств элементов. [14]Общая химия представляет собой теоретические основы системы знаний о веществах и химических процессах. Она включает четыре фундаментальных учения: о направлении химических процессов (химическая термодинамика) и их скорости (химическая кинетика), теории строения вещества и периодичности изменения свойств элементов и их соединений.


9.Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи: ковалентная, ионная, водородная и металлическая.Механизмы образования ковалентной связиCвязь между атомами возникает при перекрывании их атомных орбиталей с образованием молекулярных орбиталей (МО). Различают два механизма образования ковалентной связи.ОБМЕННЫЙ МЕХАНИЗМ - в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону: А.+.В->A:BДOНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ - образование связи происходит за счет пары электронов атома-донора и вакантной орбитали атома-акцептора: A:+B->A:B

Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d) орбиталей центрального атома многоатомной молекулы с возникновением того же числа орбиталей, эквивалентных по своим характеристикам.Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей. Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи, в частности, выравнивание длин химических связей и валентных углов в молекуле.


Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии.

В 1954 году Нобелевский комитет удостоил Л.Полинга премии по химии «За изучение природы химической связи и его применение к объяснению строения сложных молекул». Но сам Л.Полинг не был удовлетворён введением σ,π — описания для двойной и тройной связи и сопряжённых систем.

В 1958 году на симпозиуме, посвящённом памяти Кекуле, Л.Полинг развил теорию изогнутой химической связи, учитывающую кулоновскую электронную корреляцию. По этой теории двойная связь описывалась как комбинация двух изогнутых химических связей, а тройная связь как комбинация трёх изогнутых химических связей.[1]

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи — Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались»[2].

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра».[2]







Date: 2015-09-22; view: 1385; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию