Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Объективные и субъективные характеристики звука
1.Важным видом продольных волн являются звуковые волны. Так называются волны с частотами 17 – 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц – ультразвуком. Звуковые волны – упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах. 2. Избыточное звуковое давление. Уравнение звуковой волны. Уравнение упругой волны позволяет вычислить смещение любой точки пространства, по которому проходит волна, в любой момент времени. Но как говорить о смещении частиц воздуха или жидкости от положения равновесия? Звук, распространяясь в жидкости или газе, создает области сжатия и разряжение среды, в которых давление соответственно повышается или понижается по сравнению с давлением невозмущенной среды. Если - давление и плотность невозмущенной среды (среды, по которой не проходит волна), а - давление и плотность среды при распространении в ней волнового процесса, то величина называется избыточным давлением. Величина есть максимальное значение избыточное давление (амплитуда избыточного давления). Изменение избыточного давления для плоской звуковой волны (т.е. уравнение плоской звуковой волны) имеет вид:
,
где y – расстояние от источника колебаний точки, избыточное давление в которой мы определяем в момент времени t. Если ввести величину избыточной плотности и ее амплитуды так же, как мы вводили величину избыточного звукового давления, то уравнение плоской звуковой волны можно было бы записать так:
.
3. Объективные и субъективные характеристики звука. Само слово «звук» отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук – то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные, которые могут быть измерены физической аппаратурой, и с убъективные, определяемые восприятием данного звука человеком. К объективным (физическим) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу 3 включены сравнительные данные объективных и субъективных характеристик.
Эффект Доплера - изменение частоты волны, воспринимаемой наблюдателем (приемником) благодаря относительному движению источника волн и наблюдателя. Если источник волн приближается к наблюдателю, число волн, прибывающих к наблюдателю волн, каждую секунду превышает испускаемое источником волн. Если источник волн удаляется от наблюдателя, то число испускаемых волн больше, чем прибывающих к наблюдателю.
Здесь νисточн - частота волн, испускаемых источником, и νприемн - частота волн, воспринятая наблюдателем. ν0 - скорость волн в неподвижной среде, νприемн и νисточн - скорости наблюдателя и источника волн соответственно. Верхние знаки в формуле относятся к случаю, когда источник и наблюдатель перемещаются друг к другу. Нижние знаки относятся к случаю удаления друг от друга источника и наблюдателя волн. Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Рассмотрим несколько случаев проявления акустического эффекта Доплера: 1) Пусть приемник звуковых волн П в газообразной (или жидкой) среде неподвижен относительно нее, а источник И удаляется от приемника со скоростью вдоль соединяющей их прямой (рис.2, а). Источник смещается в среде за время, равное периоду его колебаний, на расстояние , где – частота колебаний источника. Рис. 2 Поэтому при движении источника длина волны в среде отлична от ее значения при неподвижном источнике: , где – фазовая скорость волны в среде. Частота волны, регистрируемая приемником,
3) Если источник неподвижен, а приемник приближается к нему со скоростью вдоль соединяющей их прямой (рис.2, в), то длина волны в среде . Однако, скорость распространения волны относительно приемника равна , так что частота волны, регистрируемая приемником 4) В том случае, когда скорость направлена под произвольным углом к радиус-вектору , соединяющему движущийся приемник с неподвижным источником (рис. 2, г), имеем: . 5) В самом общем случае, когда и приемник и источник звуковых волн движутся относительно среды с произвольным скоростями (рис.2, д), частота волны
Эту формулу можно также представить в виде (если ) где – скорость источника волны относительно приемника, а – угол между векторами и . Величина , равная проекции на направление , называется лучевой скоростью источника. С помощью эффекта Доплера измеряют скорость потока жидкостей. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси, каплях жидкости, не смешивающихся с основным потоком, пузырьках газа). Поскольку человеческое тело состоит сплошь из жидкостей, скорость которых можно измерить, эффект Доплера широко используется и в медицине, чтобы измерять скорость кровотока, скорость движения клапанов и стенок сердца (доплеровская эхокардиография) и других органов. Во всем мире данное явление используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран. Радиолокация – это определение местоположения объекта, обычно самолета или ракеты, путем облучения его высокочастотными радиоволнами и последующей регистрации отраженного сигнала. Если объект движется с большой скоростью в направлении радиолокатора или от него, то сигнал будет принят со значительным доплеровским сдвигом частоты, и по этому сдвигу можно вычислить скорость объекта. Точно так же доплеровский сдвиг частоты ультразвукового сигнала используется для определения скорости движения подводных лодок. Эффект Доплера также лежит в основе работы автосигнализации, которая действует для обнаружения движущихся объектов вблизи и внутри автомобиля. Эффект Доплера в акустике объясняется тем, что частота колебаний, воспринимаемых приемником, определяется скоростями движения источника колебаний и приемника относительно среды, в которой происходит распространение звуковых волн. Эффект Доплера наблюдается также и при движении относительно друг друга источника и приемника электромагнитных волн. Так как особой среды, служащей носителем электромагнитных волн, не существует, то частота световых волн, воспринимаемых приемником (наблюдателем), определяется только относительной скоростью источника и приемника (наблюдателя). Закономерности эффекта Доплера для электромагнитных волн устанавливаются на основе специальной теории относительности. Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны λ) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется — длина волны увеличивается: где — круговая частота, с которой источник испускает волны, — скорость распространения волн в среде, — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется). Частота, регистрируемая неподвижным приёмником
Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника
где — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику). Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая: Основные понятия и формулы Продолжение таблицы Продолжение таблицы Окончание таблицы
Скорость распространения ультразвука прямо пропорциональна длине волны и частоты колебаний: Интенсивность колебаний определяется количеством энергии, проходящей за одну секунду через один квадратный сантиметр площадью, расположенной перпендикулярно к направлению распространения ультразвукового луча, и измеряется в ваттах на квадратный сантиметр. В медицинской практике интенсивность ультразвуковых колебаний подразделяется на три основных вида: малая (до 1, 5 Вт/см2), средняя (1,5 - 3 Вт/см2) и большая (3 - 10 Вт/см2). Поглощение ультразвуковых колебаний и их рассеивание характеризует глубину проникновения ультразвука в ткани. Потери энергии ультразвука при прохождении через среду возрастают с увеличением частоты колебаний, вязкости среды и её теплопроводность. Для определения степени поглощения и ослабления ультразвука в ткани введён термин “глубина полупоглощения”, отражающий расстояние, которое должен пройти ультразвук в данной среде, пока его энергия не уменьшится вдвое:
Схема фокусированного ультразвукового датчика. Схема отражения ультразвука на границе раздела сред с малым (1-2) и большим (3-4) ультразвуковым сопротивлением. На границе раздела двух сред образуются отражённые волны, амплитуда которых (А) зависит от акустического сопротивления соприкасающихся сред и амплитуды излучающей волны. , где Аотр - амплитуда отраженной волны, Аизл- амплитуда излучающей волны,к - коэф-фициент отражения. Следовательно, Источники ультразвука
Date: 2015-09-24; view: 4735; Нарушение авторских прав |