Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Класифікація породжувальних граматик





Пусть дана грамматика G = (N, T, P, S). Тогда если правила грамматики не удовлетворяют никаким ограничениям, то ее называют грамматикой типа 0, или грамматикой без ограничений.

Если каждое правило грамматики, кроме S e, имеет вид , где | | | |, и в том случае, когда S e P, символ S не встречается в правых частях правил,то грамматику называют грамматикой типа 1, или неукорачивающей.

Если каждое правило грамматики имеет вид A , где A N, (N T)*, то ее называют грамматикой типа 2, или контекстно-свободной (КС-грамматикой).

Если каждое правило грамматики имеет вид либо A xB, либо A x, где A, B N, x T* то ее называют грамматикой типа 3, или праволинейной.

Язык типа 1 - контекстно-зависимым (КЗ), язык типа 2 - контекстно-свободным (КС), язык типа 3 - праволинейным.

K3 K2 K1 K0.

Грамматика G называется неоднозначной, если существует цепочка w, для которой имеется два или более различных деревьев вывода в G.

Грамматика G называется леворекурсивной, если в ней имеется нетерминал A такой, что существует вывод для некоторой цепочки w.

Атрибутной грамматикой называется четверка AG = (G, AS, AI, R), где

· G = (N, T, P, S) - приведенная КС-грамматика;

· AS - конечное множество синтезируемых атрибутов;

· AI - конечное множество наследуемых атрибутов, AS AI = ;

· R - конечное множество семантических правил.


Атрибутная грамматика AG сопоставляет каждому символу X из N T множество AS(X) синтезируемых атрибутов и множество AI(X) наследуемых атрибутов.







Date: 2015-09-24; view: 374; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию